+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Autism: a window onto the development of the social and the analytic brain.

      Annual review of neuroscience

      Social Behavior, physiology, Problem Solving, Phenotype, physiopathology, Nerve Net, Humans, Cognition, Brain Mapping, Brain, psychology, genetics, Autistic Disorder, Attention

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Although the neurobiological understanding of autism has been increasing exponentially, the diagnosis of autism spectrum conditions still rests entirely on behavioral criteria. Autism is therefore most productively approached using a combination of biological and psychological theory. The triad of behavioral abnormalities in social function, communication, and restricted and repetitive behaviors and interests can be explained psychologically by an impaired capacity for empathizing, or modeling the mental states governing the behavior of people, along with a superior capacity for systemizing, or inferring the rules governing the behavior of objects. This empathizing-systemizing theory explains other psychological models such as impairments of executive function or central coherence, and may have a neurobiological basis in abnormally low activity of brain regions subserving social cognition, along with abnormally high activity of regions subserving lower-level, perceptual processing--a pattern that may result from a skewed balance of local versus long-range functional connectivity.

          Related collections

          Most cited references 103

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism.

          Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity.

            The brain activation of a group of high-functioning autistic participants was measured using functional MRI during sentence comprehension and the results compared with those of a Verbal IQ-matched control group. The groups differed in the distribution of activation in two of the key language areas. The autism group produced reliably more activation than the control group in Wernicke's (left laterosuperior temporal) area and reliably less activation than the control group in Broca's (left inferior frontal gyrus) area. Furthermore, the functional connectivity, i.e. the degree of synchronization or correlation of the time series of the activation, between the various participating cortical areas was consistently lower for the autistic than the control participants. These findings suggest that the neural basis of disordered language in autism entails a lower degree of information integration and synchronization across the large-scale cortical network for language processing. The article presents a theoretical account of the findings, related to neurobiological foundations of underconnectivity in autism.
              • Record: found
              • Abstract: not found
              • Article: not found

              Autism and abnormal development of brain connectivity.


                Author and article information



                Comment on this article