Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Valuation of Variable Annuities with Guaranteed Minimum Withdrawal and Death Benefits via Stochastic Control Optimization

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      In this paper we present a numerical valuation of variable annuities with combined Guaranteed Minimum Withdrawal Benefit (GMWB) and Guaranteed Minimum Death Benefit (GMDB) under optimal policyholder behaviour solved as an optimal stochastic control problem. This product simultaneously deals with financial risk, mortality risk and human behaviour. We assume that market is complete in financial risk and mortality risk is completely diversified by selling enough policies and thus the annuity price can be expressed as appropriate expectation. The computing engine employed to solve the optimal stochastic control problem is based on a robust and efficient Gauss-Hermite quadrature method with cubic spline. We present results for three different types of death benefit and show that, under the optimal policyholder behaviour, adding the premium for the death benefit on top of the GMWB can be problematic for contracts with long maturities if the continuous fee structure is kept, which is ordinarily assumed for a GMWB contract. In fact for some long maturities it can be shown that the fee cannot be charged as any proportion of the account value -- there is no solution to match the initial premium with the fair annuity price. On the other hand, the extra fee due to adding the death benefit can be charged upfront or in periodic instalment of fixed amount, and it is cheaper than buying a separate life insurance.

      Related collections

      Author and article information

      Journal
      1411.5453

      Computational finance

      Comments

      Comment on this article