11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding bicycling in cities using system dynamics modelling

      research-article
      a , * , b
      Journal of Transport & Health
      Elsevier

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Increasing urban bicycling has established net benefits for human and environmental health. Questions remain about which policies are needed and in what order, to achieve an increase in cycling while avoiding negative consequences. Novel ways of considering cycling policy are needed, bringing together expertise across policy, community and research to develop a shared understanding of the dynamically complex cycling system. In this paper we use a collaborative learning process to develop a dynamic causal model of urban cycling to develop consensus about the nature and order of policies needed in different cycling contexts to optimise outcomes.

          Methods

          We used participatory system dynamics modelling to develop causal loop diagrams (CLDs) of cycling in three contrasting contexts: Auckland, London and Nijmegen. We combined qualitative interviews and workshops to develop the CLDs. We used the three CLDs to compare and contrast influences on cycling at different points on a “cycling trajectory” and drew out policy insights.

          Results

          The three CLDs consisted of feedback loops dynamically influencing cycling, with significant overlap between the three diagrams. Common reinforcing patterns emerged: growing numbers of people cycling lifts political will to improve the environment; cycling safety in numbers drives further growth; and more cycling can lead to normalisation across the population. By contrast, limits to growth varied as cycling increases. In Auckland and London, real and perceived danger was considered the main limit, with added barriers to normalisation in London. Cycling congestion and “market saturation” were important in the Netherlands.

          Conclusions

          A generalisable, dynamic causal theory for urban cycling enables a more ordered set of policy recommendations for different cities on a cycling trajectory. Participation meant the collective knowledge of cycling stakeholders was represented and triangulated with research evidence. Extending this research to further cities, especially in low-middle income countries, would enhance generalizability of the CLDs.

          Highlights

          • Increasing cycling in cities is good for health and addressing climate change.

          • We used participatory system dynamics modelling to understand urban cycling.

          • Feedback loops help determine policies for different cycling contexts.

          • A generalisable causal theory of cycling can enable context specific ordered policies.

          • Participation made collaborative learning across stakeholders possible.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Using thematic analysis in psychology

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport.

            We used Comparative Risk Assessment methods to estimate the health effects of alternative urban land transport scenarios for two settings-London, UK, and Delhi, India. For each setting, we compared a business-as-usual 2030 projection (without policies for reduction of greenhouse gases) with alternative scenarios-lower-carbon-emission motor vehicles, increased active travel, and a combination of the two. We developed separate models that linked transport scenarios with physical activity, air pollution, and risk of road traffic injury. In both cities, we noted that reduction in carbon dioxide emissions through an increase in active travel and less use of motor vehicles had larger health benefits per million population (7332 disability-adjusted life-years [DALYs] in London, and 12 516 in Delhi in 1 year) than from the increased use of lower-emission motor vehicles (160 DALYs in London, and 1696 in Delhi). However, combination of active travel and lower-emission motor vehicles would give the largest benefits (7439 DALYs in London, 12 995 in Delhi), notably from a reduction in the number of years of life lost from ischaemic heart disease (10-19% in London, 11-25% in Delhi). Although uncertainties remain, climate change mitigation in transport should benefit public health substantially. Policies to increase the acceptability, appeal, and safety of active urban travel, and discourage travel in private motor vehicles would provide larger health benefits than would policies that focus solely on lower-emission motor vehicles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interventions to promote cycling: systematic review

              Objectives To determine what interventions are effective in promoting cycling, the size of the effects of interventions, and evidence of any associated benefits on overall physical activity or anthropometric measures. Design Systematic review. Data sources Published and unpublished reports in any language identified by searching 13 electronic databases, websites, reference lists, and existing systematic reviews, and papers identified by experts in the field. Review methods Controlled “before and after” experimental or observational studies of the effect of any type of intervention on cycling behaviour measured at either individual or population level. Results Twenty five studies (of which two were randomised controlled trials) from seven countries were included. Six studies examined interventions aimed specifically at promoting cycling, of which four (an intensive individual intervention in obese women, high quality improvements to a cycle route network, and two multifaceted cycle promotion initiatives at town or city level) were found to be associated with increases in cycling. Those studies that evaluated interventions at population level reported net increases of up to 3.4 percentage points in the population prevalence of cycling or the proportion of trips made by bicycle. Sixteen studies assessing individualised marketing of “environmentally friendly” modes of transport to interested households reported modest but consistent net effects equating to an average of eight additional cycling trips per person per year in the local population. Other interventions that targeted travel behaviour in general were not associated with a clear increase in cycling. Only two studies assessed effects of interventions on physical activity; one reported a positive shift in the population distribution of overall physical activity during the intervention. Conclusions Community-wide promotional activities and improving infrastructure for cycling have the potential to increase cycling by modest amounts, but further controlled evaluative studies incorporating more precise measures are required, particularly in areas without an established cycling culture. Studies of individualised marketing report consistent positive effects of interventions on cycling behaviour, but these findings should be confirmed using more robust study designs. Future research should also examine how best to promote cycling in children and adolescents and through workplaces. Whether interventions to promote cycling result in an increase in overall physical activity or changes in anthropometric measures is unclear.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Transp Health
                J Transp Health
                Journal of Transport & Health
                Elsevier
                2214-1405
                2214-1413
                1 December 2017
                December 2017
                : 7
                : Pt B
                : 269-279
                Affiliations
                [a ]Department of Preventive and Social Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
                [b ]Centre for Diet and Activity Research (CEDAR), University of Cambridge, Box 285 Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
                Author notes
                [* ]Corresponding author. alex.macmillan@ 123456otago.ac.nz
                Article
                S2214-1405(16)30466-2
                10.1016/j.jth.2017.08.002
                5736169
                29276678
                9290e07e-e702-4fed-8c4a-df0674049536
                © 2017 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 December 2016
                : 8 July 2017
                : 9 August 2017
                Categories
                Article

                Comments

                Comment on this article