5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Breast cancer cell-derived exosomes and macrophage polarization are associated with lymph node metastasis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Crosstalk between breast cancer and macrophages has potential implications for tumor metastasis. This study investigates macrophage polarization induced by triple-negative breast cancer (TNBC) cell-derived exosomes that promote lymph node (LN) metastasis in orthotopic TNBC models. The MDA-MB-231 cancer cell line expressing the exosomal CD63-red fluorescence (RFP) fusion protein was generated to noninvasively visualize exosome transfer into cancer cells and macrophages. Administration of RFP-tagged exosomes enhanced migration of macrophages and induced macrophage polarization in vitro. In orthotopic TNBC models, noninvasive bioluminescent imaging, ultrasound-guided photoacoustic imaging, and histological analysis revealed that intravenous injection of RFP-tagged exosomes promoted primary tumor growth and axillary LN metastasis in which expression of CD206, a marker or alternatively activated type 2 (M2) macrophages, was significantly higher than expression of NOS2, a marker of classically activated type 1 (M1) macrophages. These results suggest breast cancer cell-derived exosomes stimulate macrophage polarization that creates favorable conditions for LN metastatic processes in TNBC.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages

          Cancer secreted exosomal miRNAs are emerging as mediators between tumor-stoma crosstalk. Here, we show epithelial ovarian cancer (EOC)-derived exosomes activated macrophages to a tumor-associated macrophage (TAM)-like phenotype with SOCS3/STAT3 pathway involvement, which could facilitate the progression of cancer. MiR-222-3p was enrichment in exosomes released from EOC cells and it could be transferred to macrophages. Overexpression of miR-222-3p in macrophages induced polarization of the M2 phenotype. Luciferase assay verified miR-222-3p targeted SOCS3 genes and expression of SOCS3 was decreased after transfection with a miR-222-3p mimic. Down-regulation of SOCS3 correlated with an increased expression of STAT3 activation. MiR-222-3p could be detected in the exosomes from serum and its levels were related to EOC. These observations propose tumor-derived exosomal miR-222-3p is an effective regulator in the polarization of tumor-promoting M2 macrophages and may be a biomarker of EOC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB

            Growing evidence links tumor progression with chronic inflammatory processes and dysregulated activity of various immune cells. In this study, we demonstrate that various types of macrophages internalize microvesicles, called exosomes, secreted by breast cancer and non-cancerous cell lines. Although both types of exosomes targeted macrophages, only cancer-derived exosomes stimulated NF-κB activation in macrophages resulting in secretion of pro-inflammatory cytokines such as IL-6, TNFα, GCSF, and CCL2. In vivo mouse experiments confirmed that intravenously injected exosomes are efficiently internalized by macrophages in the lung and brain, which correlated with upregulation of inflammatory cytokines. In mice bearing xenografted human breast cancers, tumor-derived exosomes were internalized by macrophages in axillary lymph nodes thereby triggering expression of IL-6. Genetic ablation of Toll-like receptor 2 (TLR2) or MyD88, a critical signaling adaptor in the NF-κB pathway, completely abolished the effect of tumor-derived exosomes. In contrast, inhibition of TLR4 or endosomal TLRs (TLR3/7/8/9) failed to abrogate NF-κB activation by exosomes. We further found that palmitoylated proteins present on the surface of tumor-secreted exosomes contributed to NF-κB activation. Thus, our results highlight a novel mechanism used by breast cancer cells to induce pro-inflammatory activity of distant macrophages through circulating exosomal vesicles secreted during cancer progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions.

              Normal and diseased cells release bilayered membrane-bound nanovesicles into interstitial spaces and into bodily fluids. A subgroup of such microvesicles is called exosomes and is described in blood as 30 to 100 nm in diameter and as spherical to cup-shaped nanoparticles with specific surface molecular characteristics (eg, expression of the tetraspanins CD9, CD81, and CD63). Extracellular microvesicles provide local signals (eg, autocrine and paracrine) and distant endocrine signals to cells via the transfer of their contents, which include signal proteins, lipids, miRNAs, and functional mRNAs. Exosomes and related microvesicles also aid cells in exporting less-needed molecules and potentially harmful molecules, including drugs; in the case of neoplasia, the export of chemotherapeutic drugs may facilitate cellular chemoresistance. Cancers have adapted the exosome and related microvesicles as a pathway by which neoplastic cells communicate with each other (autocrine) and with nonneoplastic cells (paracrine and endocrine); via this pathway, cancer suppresses the immune system and establishes a fertile local and distant environment to support neoplastic growth, invasion, and metastases. Because exosomes mirror and bind to the cells from which they arise, they can be used for delivery of drugs, vaccines, and gene therapy, as biomarkers and targets. We review how exosomes and related extracellular microvesicles facilitate the progression and metastases of cancers and describe how these microvesicles may affect clinical care. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                26 January 2018
                13 December 2017
                : 9
                : 7
                : 7398-7410
                Affiliations
                1 Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Jongno-Gu, Seoul 03080, Korea
                2 Department of Biomedical Sciences, Seoul National University College of Medicine, Jongno-Gu, Seoul 03080, Korea
                3 Department of Radiology, Yanbian University Hospital, Yanji City, Jilin Province 133000, China
                Author notes
                Correspondence to: Woo Kyung Moon, moonwk@ 123456snu.ac.kr
                [*]

                These authors contributed equally to this work

                Article
                23238
                10.18632/oncotarget.23238
                5800911
                29484119
                929348bd-20dc-46dd-b1d2-ab2ebff77ed6
                Copyright: © 2018 Piao et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 September 2017
                : 1 December 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                exosome,triple-negative breast cancer,lymph node,metastasis,macrophage
                Oncology & Radiotherapy
                exosome, triple-negative breast cancer, lymph node, metastasis, macrophage

                Comments

                Comment on this article