0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Automatic Method for Generation of CFD-Based 3D Compartment Models: Towards Real-Time Mixing Simulations

      , ,
      Bioengineering
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This article aims to develop a method to automatically generate CFD-based compartment models. This effort to simplify mixing models aims at capturing the interactions between material transport and chemical/biochemical conversions in large-scale reactors. The proposed method converts the CFD results into a system of mass balance equations for each defined component. The compartmentalization method is applied to two bioreactor geometries and was able to replicate tracer mixing profiles observed in CFD simulations. The generated compartment models were successfully coupled with, a simple Monod-type biokinetic model describing microbial growth, substrate consumption and product formation. The coupled model was used to simulate a four-hour fermentation in a 190 L reactor and a 10 m3 reactor. Resolving the substrate gradients had a clear impact on the biokinetics, increasing with the scale of the reactor. Moreover, the coupled model could simulate the fermentation faster than real-time. Having a real-time-solvable model is essential for implementations in digital twins and other real-time applications using the models as predictive tools.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          The Growth of Bacterial Cultures

          J MONOD (1949)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth.

            Bacteria growing under different conditions experience a broad range of demand on the rate of protein synthesis, which profoundly affects cellular resource allocation. During fast growth, protein synthesis has long been known to be modulated by adjusting the ribosome content, with the vast majority of ribosomes engaged at a near-maximal rate of elongation. Here, we systematically characterize protein synthesis by Escherichia coli, focusing on slow-growth conditions. We establish that the translational elongation rate decreases as growth slows, exhibiting a Michaelis-Menten dependence on the abundance of the cellular translational apparatus. However, an appreciable elongation rate is maintained even towards zero growth, including the stationary phase. This maintenance, critical for timely protein synthesis in harsh environments, is accompanied by a drastic reduction in the fraction of active ribosomes. Interestingly, well-known antibiotics such as chloramphenicol also cause a substantial reduction in the pool of active ribosomes, instead of slowing down translational elongation as commonly thought.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics

              Growth kinetics, i.e., the relationship between specific growth rate and the concentration of a substrate, is one of the basic tools in microbiology. However, despite more than half a century of research, many fundamental questions about the validity and application of growth kinetics as observed in the laboratory to environmental growth conditions are still unanswered. For pure cultures growing with single substrates, enormous inconsistencies exist in the growth kinetic data reported. The low quality of experimental data has so far hampered the comparison and validation of the different growth models proposed, and only recently have data collected from nutrient-controlled chemostat cultures allowed us to compare different kinetic models on a statistical basis. The problems are mainly due to (i) the analytical difficulty in measuring substrates at growth-controlling concentrations and (ii) the fact that during a kinetic experiment, particularly in batch systems, microorganisms alter their kinetic properties because of adaptation to the changing environment. For example, for Escherichia coli growing with glucose, a physiological long-term adaptation results in a change in K S for glucose from some 5 mg liter −1 to ca. 30 μg liter −1 . The data suggest that a dilemma exists, namely, that either “intrinsic” K S (under substrate-controlled conditions in chemostat culture) or μ max (under substrate-excess conditions in batch culture) can be measured but both cannot be determined at the same time. The above-described conventional growth kinetics derived from single-substrate-controlled laboratory experiments have invariably been used for describing both growth and substrate utilization in ecosystems. However, in nature, microbial cells are exposed to a wide spectrum of potential substrates, many of which they utilize simultaneously (in particular carbon sources). The kinetic data available to date for growth of pure cultures in carbon-controlled continuous culture with defined mixtures of two or more carbon sources (including pollutants) clearly demonstrate that simultaneous utilization results in lowered residual steady-state concentrations of all substrates. This should result in a competitive advantage of a cell capable of mixed-substrate growth because it can grow much faster at low substrate concentrations than one would expect from single-substrate kinetics. Additionally, the relevance of the kinetic principles obtained from defined culture systems with single, mixed, or multicomponent substrates to the kinetics of pollutant degradation as it occurs in the presence of alternative carbon sources in complex environmental systems is discussed. The presented overview indicates that many of the environmentally relevant apects in growth kinetics are still waiting to be discovered, established, and exploited.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOENG
                Bioengineering
                Bioengineering
                MDPI AG
                2306-5354
                February 2024
                February 09 2024
                : 11
                : 2
                : 169
                Article
                10.3390/bioengineering11020169
                929a0cde-3060-4d04-99aa-533a91ff7f3f
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article