6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biotechnological Innovations and Therapeutic Application of Pediococcus and Lactic Acid Bacteria: The Next-Generation Microorganism

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactic acid bacteria represent a worthwhile organism within the microbial consortium for the food sector, health, and biotechnological applications. They tend to offer high stability to environmental conditions, with an indicated increase in product yield, alongside their moderate antimicrobial activity. Lack of endotoxins and inclusion bodies, extracellular secretion, and surface display with other unique properties, are all winning attributes of these Gram-positive lactic acid bacteria, of which, Pediococcus is progressively becoming an attractive and promising host, as the next-generation probiotic comparable with other well-known model systems. Here, we presented the biotechnological developments in Pediococcal bacteriocin expression system, contemporary variegated models of Pediococcus and lactic acid bacteria strains as microbial cell factory, most recent applications as possible live delivery vector for use as therapeutics, as well as upsurging challenges and future perspective. With the radical introduction of artificial intelligence and neural network in Synthetic Biology, the microbial usage of lactic acid bacteria as an alternative eco-friendly strain, with safe use properties compared with the already known conventional strains is expected to see an increase in various food and biotechnological applications in years to come as it offers better hope of safety, accuracy, and higher efficiency.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Genome editing. The new frontier of genome engineering with CRISPR-Cas9.

          The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics. Copyright © 2014, American Association for the Advancement of Science.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Planning chemical syntheses with deep neural networks and symbolic AI

              To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                14 February 2022
                2021
                : 9
                : 802031
                Affiliations
                The Key Laboratory of Industrial Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi, China
                Author notes

                Edited by: Fengjie Cui, Jiangsu University, China

                Reviewed by: Xuetuan Wei, Huazhong Agricultural University, China

                Zaiwei Man, Changzhou University, China

                *Correspondence: Zhiming Rao, raozhm@ 123456jiangnan.edu.cn

                This article was submitted to Industrial Biotechnology, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                802031
                10.3389/fbioe.2021.802031
                8883390
                35237589
                929b1f40-9d79-4945-89fa-114dd30607a3
                Copyright © 2022 Peter, Qiao, Godspower, Ajeje, Xu, Zhang, Yang and Rao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 October 2021
                : 08 December 2021
                Funding
                Funded by: National Key Research and Development Program of China , doi 10.13039/501100012166;
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Funded by: Science and Technology Bureau of Xinjiang Production and Construction Corps , doi 10.13039/501100021193;
                Categories
                Bioengineering and Biotechnology
                Review

                probiotics,pediococcus,biotherapeutics,bacteriocin,genome editing,deep neural network

                Comments

                Comment on this article