2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Efficiency enhancement in dye-sensitized solar cells using hierarchical TiO2 submicron size spheres as a light scattering layer

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency.

          The iodide/triiodide redox shuttle has limited the efficiencies accessible in dye-sensitized solar cells. Here, we report mesoscopic solar cells that incorporate a Co((II/III))tris(bipyridyl)-based redox electrolyte in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer (designated YD2-o-C8). The specific molecular design of YD2-o-C8 greatly retards the rate of interfacial back electron transfer from the conduction band of the nanocrystalline titanium dioxide film to the oxidized cobalt mediator, which enables attainment of strikingly high photovoltages approaching 1 volt. Because the YD2-o-C8 porphyrin harvests sunlight across the visible spectrum, large photocurrents are generated. Cosensitization of YD2-o-C8 with another organic dye further enhances the performance of the device, leading to a measured power conversion efficiency of 12.3% under simulated air mass 1.5 global sunlight.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers.

              Dye-sensitized solar cells have gained widespread attention in recent years because of their low production costs, ease of fabrication and tunable optical properties, such as colour and transparency. Here, we report a molecularly engineered porphyrin dye, coded SM315, which features the prototypical structure of a donor-π-bridge-acceptor and both maximizes electrolyte compatibility and improves light-harvesting properties. Linear-response, time-dependent density functional theory was used to investigate the perturbations in the electronic structure that lead to improved light harvesting. Using SM315 with the cobalt(II/III) redox shuttle resulted in dye-sensitized solar cells that exhibit a high open-circuit voltage VOC of 0.91 V, short-circuit current density JSC of 18.1 mA cm(-2), fill factor of 0.78 and a power conversion efficiency of 13%.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Solid State Electrochemistry
                J Solid State Electrochem
                Springer Science and Business Media LLC
                1432-8488
                1433-0768
                October 2020
                June 23 2020
                October 2020
                : 24
                : 10
                : 2261-2269
                Article
                10.1007/s10008-020-04727-7
                92bfcd4b-ee6f-4e1a-bb4e-d245880d0377
                © 2020

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article