26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Keishibukuryogan, a Traditional Japanese Medicine, Inhibits Platelet Aggregation in Guinea Pig Whole Blood

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effects of keishibukuryogan (KBG) on platelet aggregation were investigated. To ensure the specificity of KBG, tokishakuyakusan (TSS) and kamisyoyosan (KSS), which are known to have platelet aggregation-inhibiting effects, and rikkunshito (RKT) and shakuyakukanzoto (SKT), which are considered to be devoid of such effects, were used for comparison. The platelet aggregation of each test drug was measured by the screen filtration pressure method using whole blood of guinea pigs and expressed as a collagen-induced pressure rate (%) or a collagen concentration required for 50% increase in the pressure rate (PATI value). KBG suppressed the collagen-induced whole blood pressure rate increase and increased the PATI value, like TSS and KSS. Neither RKT nor SKT showed these effects. The Moutan cortex and Cinnamomi cortex, the constituent crude drugs of KBG, showed KBG-like pressure rate suppression and PATI-increasing effects. Furthermore, paeonol, a representative component of Moutan cortex, and aspirin which is known to have platelet aggregation-inhibiting activity (COX-1 inhibitor) also showed similar effects. These results suggest that the platelet aggregation-inhibiting activity of the constituent crude drugs Moutan cortex and Cinnamomi cortex is involved in the improving effects of KBG on impaired microcirculation and that paeonol plays a role in these effects.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Aggregation of blood platelets by adenosine diphosphate and its reversal.

          G V Born (1962)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paeonol reduced cerebral infarction involving the superoxide anion and microglia activation in ischemia-reperfusion injured rats.

            Both Moutan cortex of Paeonia suffruticosa Andrews (MC) and the root of Paeonia lactiflora Pall (PL) are important Traditional Chinese herbs used commonly to treat inflammatory and pyretic disorders. Paeonol, a common component of MC causes anti-platelet aggregation and scavenges free radicals. Therefore, the aim of the present study is to investigate the effects of Paeonol on cerebral infarct. A total of 60 male Sprague-Dawley (SD) rats were studied. An animal model of cerebral infarct was established by occluding both common carotid arteries and the right middle cerebral artery for 90 min, followed by a 24 h period of reperfusion. The percentage of cerebral infarction area to total brain area in each piece of brain tissue, and neuro-deficit score were measured. Superoxide anion was determined by the number of lucigenin-chemiluminescence (CL) counts. ED1 (mouse anti rat CD68) and interleukin-1beta (IL-1beta) immunostaining in the cerebral infarction region were also investigated for activation of microglia. The results indicated that Paeonol 15 and 20 mg/kg pretreatment and 20 mg posttreatment reduced the cerebral infarction area; Paeonol 15 and 20 mg/kg pretreatment reduced the neuro-deficit score. In addition, Paeonol 20 mg/kg pretreatment reduced the lucigenin-CL counts at 2 h period of reperfusion. The number of ED1 and IL-1beta immunoreactive cells also reduced in the cerebral infarction region; there were no significant changes in blood sugar levels. The results show that Paeonol reduced cerebral infarct and neuro-deficit in rat, suggesting Paeonol might play a similar role in reducing cerebral infarction in humans. Paeonol suppresses and scavenges superoxide anion, and inhibit microglia activation and IL-1beta in ischemia-reperfusion injured rats.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Proteomic Approach for the Diagnosis of ‘Oketsu’ (blood stasis), a Pathophysiologic Concept of Japanese Traditional (Kampo) Medicine

              ‘Oketsu’ is a pathophysiologic concept in Japanese traditional (Kampo) medicine, primarily denoting blood stasis/stagnant syndrome. Here we have explored plasma protein biomarkers and/or diagnostic algorithms for ‘Oketsu’. Sixteen rheumatoid arthritis (RA) patients were treated with keishibukuryogan (KBG), a representative Kampo medicine for improving ‘Oketsu’. Plasma samples were diagnosed as either having an ‘Oketsu’ (n = 19) or ‘non-Oketsu’ (n = 29) state according to Terasawa's ‘Oketsu’ scoring system. Protein profiles were obtained by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) and hierarchical clustering and decision tree analyses were performed. KBG treatment for 4 or 12 weeks decreased the ‘Oketsu’ scores significantly. SELDI protein profiles gave 266 protein peaks, whose expression was significantly different between the ‘Oketsu’ and ‘non-Oketsu’ states. Hierarchical clustering gave three major clusters (I, II, III). The majority (68.4%) of ‘Oketsu’ samples were clustered into one cluster as the principal component of cluster I. The remaining ‘Oketsu’ profiles constituted a minor component of cluster II and were all derived from patients cured of the ‘Oketsu’ state at 12 weeks. Construction of the decision tree addressed the possibility of developing a diagnostic algorithm for ‘Oketsu’. A reduction in measurement/pre-processing conditions (from 55 to 16) gave a similar outcome in the clustering and decision tree analyses. The present study suggests that the pathophysiologic concept of Kampo medicine ‘Oketsu’ has a physical basis in terms of the profile of blood proteins. It may be possible to establish a set of objective criteria for diagnosing ‘Oketsu’ using a combination of proteomic and bioinformatics-based classification methods.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2015
                24 August 2015
                24 August 2015
                : 2015
                : 295706
                Affiliations
                Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
                Author notes

                Academic Editor: Ching-Liang Hsieh

                Article
                10.1155/2015/295706
                4561328
                92cf3668-c3ca-4838-9309-742569f3e337
                Copyright © 2015 Kiyoshi Terawaki et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 May 2015
                : 2 August 2015
                : 11 August 2015
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article