14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      McGurk illusion recalibrates subsequent auditory perception

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Serial dependence in visual perception

          Visual input often arrives in a noisy and discontinuous stream, owing to head and eye movements, occlusion, lighting changes, and many other factors. Yet the physical world is generally stable—objects and physical characteristics rarely change spontaneously. How then does the human visual system capitalize on continuity in the physical environment over time? Here we show that visual perception is serially dependent, using both prior and present input to inform perception at the present moment. Using an orientation judgment task, we found that even when visual input changes randomly over time, perceived orientation is strongly and systematically biased toward recently seen stimuli. Further, the strength of this bias is modulated by attention and tuned to the spatial and temporal proximity of successive stimuli. These results reveal a serial dependence in perception characterized by a spatiotemporally tuned, orientation-selective operator—which we call a continuity field—that may promote visual stability over time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses.

            Use of multivoxel pattern analysis (MVPA) to predict the cognitive state of a subject during task performance has become a popular focus of fMRI studies. The input to these analyses consists of activation patterns corresponding to different tasks or stimulus types. These activation patterns are fairly straightforward to calculate for blocked trials or slow event-related designs, but for rapid event-related designs the evoked BOLD signal for adjacent trials will overlap in time, complicating the identification of signal unique to specific trials. Rapid event-related designs are often preferred because they allow for more stimuli to be presented and subjects tend to be more focused on the task, and thus it would be beneficial to be able to use these types of designs in MVPA analyses. The present work compares 8 different models for estimating trial-by-trial activation patterns for a range of rapid event-related designs varying by interstimulus interval and signal-to-noise ratio. The most effective approach obtains each trial's estimate through a general linear model including a regressor for that trial as well as another regressor for all other trials. Through the analysis of both simulated and real data we have found that this model shows some improvement over the standard approaches for obtaining activation patterns. The resulting trial-by-trial estimates are more representative of the true activation magnitudes, leading to a boost in classification accuracy in fast event-related designs with higher signal-to-noise. This provides the potential for fMRI studies that allow simultaneous optimization of both univariate and MVPA approaches. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system.

              The transverse temporal gyrus of Heschl contains the human auditory cortex. Several schematic maps of the cytoarchitectonic correlate of this functional entity are available, but they present partly conflicting data (number and position of borders of the primary auditory areas) and they do not enable reliable comparisons with functional imaging data in a common spatial reference system. In order to provide a 3-D data set of the precise position and extent of the human primary auditory cortex, its putative subdivisions, and its topographical intersubject variability, we performed a quantitative cytoarchitectonic analysis of 10 brains using a recently established technique for observer-independent definition of areal borders. Three areas, Te1.1, Te1.0, and Te1.2, with a well-developed layer IV, which represent the primary auditory cortex (Brodmann area 41), can be identified along the mediolateral axis of the Heschl gyrus. The cell density was significantly higher in Te1.1 compared to Te1.2 in the left but not in the right hemisphere. The cytoarchitectonically defined areal borders of the primary auditory cortex do not consistently match macroanatomic landmarks like gyral and sulcal borders. The three primary auditory areas of each postmortem brain were mapped to a spatial reference system which is based on a brain registered by in vivo magnetic resonance imaging. The integration of a sample of postmortem brains in a spatial reference system allows one to estimate the spatial variability of each cytoarchitectonically defined region with respect to this reference system. In future, the transfer of in vivo structural and functional data into the same spatial reference system will enable accurate comparisons of cytoarchitectonic maps of the primary auditory cortex with activation centers as established with functional imaging procedures. Copyright 2001 Academic Press.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                09 September 2016
                2016
                : 6
                : 32891
                Affiliations
                [1 ]Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour , the Netherlands
                Author notes
                Article
                srep32891
                10.1038/srep32891
                5017187
                27611960
                92cf8d07-48b4-445a-a971-18f53d2198da
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 March 2016
                : 08 August 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article