Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Improved method for predicting linear B-cell epitopes

1 , , 1 , 1

Immunome Research

BioMed Central

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Background

      B-cell epitopes are the sites of molecules that are recognized by antibodies of the immune system. Knowledge of B-cell epitopes may be used in the design of vaccines and diagnostics tests. It is therefore of interest to develop improved methods for predicting B-cell epitopes. In this paper, we describe an improved method for predicting linear B-cell epitopes.

      Results

      In order to do this, three data sets of linear B-cell epitope annotated proteins were constructed. A data set was collected from the literature, another data set was extracted from the AntiJen database and a data sets of epitopes in the proteins of HIV was collected from the Los Alamos HIV database. An unbiased validation of the methods was made by testing on data sets on which they were neither trained nor optimized on. We have measured the performance in a non-parametric way by constructing ROC-curves.

      Conclusion

      The best single method for predicting linear B-cell epitopes is the hidden Markov model. Combining the hidden Markov model with one of the best propensity scale methods, we obtained the BepiPred method. When tested on the validation data set this method performs significantly better than any of the other methods tested. The server and data sets are publicly available at http://www.cbs.dtu.dk/services/BepiPred.

      Related collections

      Most cited references 32

      • Record: found
      • Abstract: not found
      • Article: not found

      Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

      The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        A simple method for displaying the hydropathic character of a protein.

          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Amino acid substitution matrices from protein blocks.

          Methods for alignment of protein sequences typically measure similarity by using a substitution matrix with scores for all possible exchanges of one amino acid with another. The most widely used matrices are based on the Dayhoff model of evolutionary rates. Using a different approach, we have derived substitution matrices from about 2000 blocks of aligned sequence segments characterizing more than 500 groups of related proteins. This led to marked improvements in alignments and in searches using queries from each of the groups.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
            Contributors
            Journal
            Immunome Res
            Immunome Research
            BioMed Central (London )
            1745-7580
            2006
            24 April 2006
            : 2
            : 2
            1479323
            1745-7580-2-2
            16635264
            10.1186/1745-7580-2-2
            Copyright © 2006 Larsen et al; licensee BioMed Central Ltd.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Research

            Immunology

            Comments

            Comment on this article