8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Planck 2018 results : VI. Cosmological parameters

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Planck Collaboration
      Astronomy & Astrophysics
      EDP Sciences
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 σ level. We find good consistency with the standard spatially-flat 6-parameter ΛCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Ω c h 2 = 0.120 ± 0.001, baryon density Ω b h 2 = 0.0224 ± 0.0001, scalar spectral index n s = 0.965 ± 0.004, and optical depth τ = 0.054 ± 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 θ * = 1.0411 ± 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H 0 = (67.4 ± 0.5) km s −1 Mpc −1; matter density parameter Ω m = 0.315 ± 0.007; and matter fluctuation amplitude σ 8 = 0.811 ± 0.006. We find no compelling evidence for extensions to the base-ΛCDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N eff = 2.99 ± 0.17, in agreement with the Standard Model prediction N eff = 3.046, and find that the neutrino mass is tightly constrained to ∑ m ν < 0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base ΛCDM at over 2 σ, which pulls some parameters that affect the lensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Ω K = 0.001 ± 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w 0 = −1.03 ± 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r 0.002 < 0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations. The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 σ, tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.

          Related collections

          Most cited references218

          • Record: found
          • Abstract: found
          • Article: not found

          Planck 2018 results: VI. Cosmological parameters

          We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 σ level. We find good consistency with the standard spatially-flat 6-parameter ΛCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Ω c h 2 = 0.120 ± 0.001, baryon density Ω b h 2 = 0.0224 ± 0.0001, scalar spectral index n s = 0.965 ± 0.004, and optical depth τ = 0.054 ± 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 θ * = 1.0411 ± 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H 0 = (67.4 ± 0.5) km s −1 Mpc −1 ; matter density parameter Ω m = 0.315 ± 0.007; and matter fluctuation amplitude σ 8 = 0.811 ± 0.006. We find no compelling evidence for extensions to the base-ΛCDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N eff = 2.99 ± 0.17, in agreement with the Standard Model prediction N eff = 3.046, and find that the neutrino mass is tightly constrained to ∑ m ν < 0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base ΛCDM at over 2 σ , which pulls some parameters that affect the lensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Ω K = 0.001 ± 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w 0 = −1.03 ± 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r 0.002 < 0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations. The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 σ , tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Planck 2018 results: V. CMB power spectra and likelihoods

            We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low ( ℓ 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Calibration of the Tip of the Red Giant Branch

                Bookmark

                Author and article information

                Journal
                Astronomy & Astrophysics
                A&A
                EDP Sciences
                0004-6361
                1432-0746
                September 2020
                September 11 2020
                September 2020
                : 641
                : A6
                Article
                10.1051/0004-6361/201833910
                92dfccf0-a38a-48cd-aa8a-2618946fda95
                © 2020

                https://www.edpsciences.org/en/authors/copyright-and-licensing

                Product
                Self URI (article page): https://www.aanda.org/10.1051/0004-6361/201833910

                Comments

                Comment on this article