Blog
About

17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A transient pool of nuclear F-actin at mitotic exit controls chromatin organization

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Re-establishment of nuclear structure and chromatin organization after cell division is integral for genome regulation or development and is frequently altered during cancer progression. The mechanisms underlying chromatin expansion in daughter cells remain largely unclear. Here, we describe the transient formation of nuclear actin filaments (F-actin) during mitotic exit. These nuclear F-actin structures assemble in daughter cell nuclei and undergo dynamic reorganization to promote nuclear protrusions and volume expansion throughout early G1 of the cell cycle. Specific inhibition of this nuclear F-actin assembly impaired nuclear expansion and chromatin decondensation after mitosis and during early mouse embryonic development. Biochemical screening for mitotic nuclear F-actin interactors identified the actin-disassembling factor cofilin-1. Optogenetic regulation of cofilin-1 revealed its critical role for controlling timing, turnover and dynamics of F-actin assembly inside daughter cell nuclei. Our findings identify a cell-cycle-specific and spatiotemporally controlled form of nuclear F-actin that reorganizes the mammalian nucleus after mitosis.

          Related collections

          Most cited references 24

          • Record: found
          • Abstract: found
          • Article: not found

          Direct stochastic optical reconstruction microscopy with standard fluorescent probes.

          Direct stochastic optical reconstruction microscopy (dSTORM) uses conventional fluorescent probes such as labeled antibodies or chemical tags for subdiffraction resolution fluorescence imaging with a lateral resolution of ∼20 nm. In contrast to photoactivated localization microscopy (PALM) with photoactivatable fluorescent proteins, dSTORM experiments start with bright fluorescent samples in which the fluorophores have to be transferred to a stable and reversible OFF state. The OFF state has a lifetime in the range of 100 milliseconds to several seconds after irradiation with light intensities low enough to ensure minimal photodestruction. Either spontaneously or photoinduced on irradiation with a second laser wavelength, a sparse subset of fluorophores is reactivated and their positions are precisely determined. Repetitive activation, localization and deactivation allow a temporal separation of spatially unresolved structures in a reconstructed image. Here we present a step-by-step protocol for dSTORM imaging in fixed and living cells on a wide-field fluorescence microscope, with standard fluorescent probes focusing especially on the photoinduced fine adjustment of the ratio of fluorophores residing in the ON and OFF states. Furthermore, we discuss labeling strategies, acquisition parameters, and temporal and spatial resolution. The ultimate step of data acquisition and data processing can be performed in seconds to minutes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the histogram as a density estimator:L 2 theory

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              rapidSTORM: accurate, fast open-source software for localization microscopy.

                Bookmark

                Author and article information

                Journal
                Nature Cell Biology
                Nat Cell Biol
                Springer Nature
                1465-7392
                1476-4679
                November 13 2017
                November 13 2017
                :
                :
                Article
                10.1038/ncb3641
                29131140
                © 2017
                Product

                Comments

                Comment on this article