51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diffuse gamma-ray constraints on dark matter revisited. I: the impact of subhalos

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We make a detailed analysis of the indirect diffuse gamma-ray signals from dark matter annihilation in the Galaxy. We include the prompt emission, as well as the emission from inverse Compton scattering whenever the annihilation products contain light leptons. We consider both the contribution from the smooth dark matter halo and that from substructures. The main parameters for the latter are the mass function index and the minimal subhalo mass. We use recent results from N-body simulations to set the most reasonable range of parameters, and find that the signal can be boosted by a factor ranging from 2 to 15 towards the Galactic poles, slightly more towards the Galactic anticenter, with an important dependence on the subhalo mass index. This uncertainty is however much less than that of the extragalactic signal studied in the literature. We derive upper bounds on the dark matter annihilation cross section using the isotropic gamma-ray emission measured by Fermi-LAT, for two directions in the sky, the Galactic anticenter and the Galactic pole(s). The former represents the lowest irreducible signal from dark matter annihilation, and the latter is robust as the astrophysical background, dominated by the hadronic contribution, is rather well established in that direction. Finally, we show how the knowledge of the minimal subhalo mass, which formally depends on the dark matter particle interactions with normal matter, can be used to derive the mass function index.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Supersymmetric Dark Matter

          There is almost universal agreement among astronomers that most of the mass in the Universe and most of the mass in the Galactic halo is dark. Many lines of reasoning suggest that the dark matter consists of some new, as yet undiscovered, weakly-interacting massive particle (WIMP). There is now a vast experimental effort being surmounted to detect WIMPS in the halo. The most promising techniques involve direct detection in low-background laboratory detectors and indirect detection through observation of energetic neutrinos from annihilation of WIMPs that have accumulated in the Sun and/or the Earth. Of the many WIMP candidates, perhaps the best motivated and certainly the most theoretically developed is the neutralino, the lightest superpartner in many supersymmetric theories. We review the minimal supersymmetric extension of the Standard Model and discuss prospects for detection of neutralino dark matter. We review in detail how to calculate the cosmological abundance of the neutralino and the event rates for both direct- and indirect-detection schemes, and we discuss astrophysical and laboratory constraints on supersymmetric models. We isolate and clarify the uncertainties from particle physics, nuclear physics, and astrophysics that enter at each step in the calculation. We briefly review other related dark-matter candidates and detection techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Clumps and streams in the local dark matter distribution

            In cold dark matter cosmological models, structures form and grow by merging of smaller units. Numerical simulations have shown that such merging is incomplete; the inner cores of halos survive and orbit as "subhalos" within their hosts. Here we report a simulation that resolves such substructure even in the very inner regions of the Galactic halo. We find hundreds of very concentrated dark matter clumps surviving near the solar circle, as well as numerous cold streams. The simulation reveals the fractal nature of dark matter clustering: Isolated halos and subhalos contain the same relative amount of substructure and both have cuspy inner density profiles. The inner mass and phase-space densities of subhalos match those of recently discovered faint, dark matter-dominated dwarf satellite galaxies and the overall amount of substructure can explain the anomalous flux ratios seen in strong gravitational lenses. Subhalos boost gamma-ray production from dark matter annihilation, by factors of 4-15, relative to smooth galactic models. Local cosmic ray production is also enhanced, typically by a factor 1.4, but by more than a factor of ten in one percent of locations lying sufficiently close to a large subhalo. These estimates assume that gravitational effects of baryons on dark matter substructure are small.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cosmic-Ray Antiprotons as a Probe of a Photino-Dominated Universe

                Bookmark

                Author and article information

                Journal
                10 July 2012
                2012-11-02
                Article
                10.1088/1475-7516/2012/11/021
                1207.2476
                92f6dbbf-6d78-4e3d-8228-cb597bac989d

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                LUPM:12-039
                JCAP 11 (2012) 021
                32 pages. V2: changes to match the version accepted for publication in JCAP
                astro-ph.HE hep-ph

                Comments

                Comment on this article