Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PANDA: Facilitating Usable AI Development

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advances in artificial intelligence (AI) and machine learning have created a general perception that AI could be used to solve complex problems, and in some situations over-hyped as a tool that can be so easily used. Unfortunately, the barrier to realization of mass adoption of AI on various business domains is too high because most domain experts have no background in AI. Developing AI applications involves multiple phases, namely data preparation, application modeling, and product deployment. The effort of AI research has been spent mostly on new AI models (in the model training stage) to improve the performance of benchmark tasks such as image recognition. Many other factors such as usability, efficiency and security of AI have not been well addressed, and therefore form a barrier to democratizing AI. Further, for many real world applications such as healthcare and autonomous driving, learning via huge amounts of possibility exploration is not feasible since humans are involved. In many complex applications such as healthcare, subject matter experts (e.g. Clinicians) are the ones who appreciate the importance of features that affect health, and their knowledge together with existing knowledge bases are critical to the end results. In this paper, we take a new perspective on developing AI solutions, and present a solution for making AI usable. We hope that this resolution will enable all subject matter experts (eg. Clinicians) to exploit AI like data scientists.

          Related collections

          Most cited references 6

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Long Short-Term Memory

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A Survey on Transfer Learning

                Bookmark

                Author and article information

                Journal
                26 April 2018
                Article
                1804.09997

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Custom metadata
                cs.AI cs.DB

                Databases, Artificial intelligence

                Comments

                Comment on this article