19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Macrophage density in pharyngeal and laryngeal muscles greatly exceeds that in other striated muscles: an immunohistochemical study using elderly human cadavers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophages play an important role in aging-related muscle atrophy (i.e., sarcopenia). We examined macrophage density in six striated muscles (cricopharyngeus muscle, posterior cricoarytenoideus muscle, genioglossus muscle, masseter muscle, infraspinatus muscle, and external anal sphincter). We examined 14 donated male cadavers and utilized CD68 immunohistochemistry to clarify macrophage density in muscles. The numbers of macrophages per striated muscle fiber in the larynx and pharynx (0.34 and 0.31) were 5–6 times greater than those in the tongue, shoulder, and anus (0.05–0.07) with high statistical significance. Thick muscle fibers over 80 µm in diameter were seen in the pharynx, larynx, and anal sphincter of two limited specimens. Conversely, in the other sites or specimens, muscle fibers were thinner than 50 µm. We did not find any multinuclear muscle cells suggestive of regeneration. At the beginning of the study, we suspected that mucosal macrophages might have invaded into the muscle layer of the larynx and pharynx, but we found no evidence of inflammation in the mucosa. Likewise, the internal anal sphincter (a smooth muscle layer near the mucosa) usually contained fewer macrophages than the external sphincter. The present result suggest that, in elderly men, thinning and death of striated muscle fibers occur more frequently in the larynx and pharynx than in other parts of the body.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype.

          M1 macrophages play a major role in worsening muscle injury in the mdx mouse model of Duchenne muscular dystrophy. However, mdx muscle also contains M2c macrophages that can promote tissue repair, indicating that factors regulating the balance between M1 and M2c phenotypes could influence the severity of the disease. Because interleukin-10 (IL-10) modulates macrophage activation in vitro and its expression is elevated in mdx muscles, we tested whether IL-10 influenced the macrophage phenotype in mdx muscle and whether changes in IL-10 expression affected the pathology of muscular dystrophy. Ablation of IL-10 expression in mdx mice increased muscle damage in vivo and reduced mouse strength. Treating mdx muscle macrophages with IL-10 reduced activation of the M1 phenotype, assessed by iNOS expression, and macrophages from IL-10 null mutant mice were more cytolytic than macrophages isolated from wild-type mice. Our data also showed that muscle cells in mdx muscle expressed the IL-10 receptor, suggesting that IL-10 could have direct effects on muscle cells. We assayed whether ablation of IL-10 in mdx mice affected satellite cell numbers, using Pax7 expression as an index, but found no effect. However, IL-10 mutation significantly increased myogenin expression in vivo during the acute and the regenerative phase of mdx pathology. Together, the results show that IL-10 plays a significant regulatory role in muscular dystrophy that may be caused by reducing M1 macrophage activation and cytotoxicity, increasing M2c macrophage activation and modulating muscle differentiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Increases of M2a macrophages and fibrosis in aging muscle are influenced by bone marrow aging and negatively regulated by muscle-derived nitric oxide

            Muscle aging is associated with changes in myeloid cell phenotype that may influence age-related changes in muscle structure. We tested whether preventing age-related reductions in muscle neuronal nitric oxide synthase (nNOS) would obviate age-related changes in myeloid cells in muscle. Our findings show that muscle aging is associated with elevations of anti-inflammatory M2a macrophages that can increase muscle fibrosis. Expression of a muscle-specific nNOS transgene in mice prevented age-related increases in M2a macrophages. Transgene expression also reduced expression of collagens and decreased muscle fibrosis. The nNOS transgene prevented age-related increases in arginase-1 but did not influence TGFβ expression, indicating that the transgene may prevent age-related muscle fibrosis by inhibiting the arginase-dependent profibrotic pathway. Although aged satellite cells or fibro-adipogenic precursor (FAPs) cells also promote fibrosis, transgene expression had no effect on the expression of key signaling molecules that regulate fibrogenic activity of those cells. Finally, we tested whether increases in M2a macrophages and the associated increase in fibrosis were attributable to aging of myeloid lineage cells. Young bone marrow cells (BMCs) were transplanted into young or old mice, and muscles were collected 8 months later. Muscles of young mice receiving young BMCs showed no effect on M2a macrophage number or collagen accumulation compared to age-matched, nontransplanted controls. However, muscles of old mice receiving young BMCs showed fewer M2a macrophages and less accumulation of collagen. Thus, the age-related increase in M2a macrophages in aging muscle and the associated muscle fibrosis are determined in part by the age of bone marrow cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endomysial fibrosis in Duchenne muscular dystrophy: a marker of poor outcome associated with macrophage alternative activation.

              There is considerable interindividual variability in motor function among patients with Duchenne muscular dystrophy (DMD); moreover, pathogenetic mechanisms of motor dysfunction in DMD are not understood. Using multiparametric analysis, we correlated initial histologic alterations in quadriceps muscle biopsies from 25 steroid therapy-free patients with DMD with 13 relevant clinical features assessed by a single clinical team during a long-term period (mean, >10 years). There was no residual muscle dystrophin by immunohistochemistry and Western blot analysis in the biopsies. Myofiber size, hypercontracted fibers, necrotic/basophilic fibers, endomysial and perimysial fibrosis, and fatty degeneration were assessed by morphometry. Endomysial fibrosis was the only myopathologic parameter that significantly correlated with poor motor outcome as assessed by quadriceps muscle strength, manual muscle testing of upper and lower limbs at 10 years, and age at ambulation loss (all p<0.002). Motor outcome and fibrosis did not correlate with genotype. Myofibers exhibited oxidative stress-induced protein alterations and became separated from capillaries by fibrosis that was associated with both increase of CD206+ alternatively activated macrophages and a relative decrease of CD56+ satellite cells (both p<0.0001). This study provides a strong rationale for antifibrotic therapeutic strategies in DMD and supports the view that alternatively activated macrophages that are known to inhibit myogenesis while promoting cellular collagen production play a key role in myofibrosis.
                Bookmark

                Author and article information

                Journal
                Anat Cell Biol
                Anat Cell Biol
                ACB
                Anatomy & Cell Biology
                Korean Association of Anatomists
                2093-3665
                2093-3673
                September 2016
                29 September 2016
                : 49
                : 3
                : 177-183
                Affiliations
                [1 ]Department of Anatomy, Tokyo Dental College, Tokyo, Japan.
                [2 ]Department of Otorhinolaryngology, Tohoku University School of Medicine, Sendai, Japan.
                [3 ]Division of Internal Medicine, Iwamizawa Asuka Hospital, Iwamizawa, Japan.
                Author notes
                Corresponding author: Masahito Yamamoto. Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan. Tel: +81-3-6380-9592, Fax: +81-3-6380-9664, yamamotomasahito@ 123456tdc.ac.jp
                Article
                10.5115/acb.2016.49.3.177
                5052226
                27722010
                92f7fdb4-e6fd-488e-bdeb-a376af13ced0
                Copyright © 2016. Anatomy & Cell Biology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 June 2016
                : 29 July 2016
                : 17 August 2016
                Categories
                Original Article
                Cell Biology

                Cell biology
                deglutition,deglutition disorders,sarcopenia,larynx,pharynx
                Cell biology
                deglutition, deglutition disorders, sarcopenia, larynx, pharynx

                Comments

                Comment on this article