11
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GNEN-1: a spontaneously immortalized cell line from gastric neuroendocrine neoplasia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mixed neuroendocrine-non-neuroendocrine neoplasms (MINEN) are rare tumors that consist of at least 30% of both neuroendocrine and non-neuroendocrine components. The data concerning the pathogenesis of MINEN suggest a monoclonal origin. We describe a spontaneously immortalized cell line derived from gastric MINEN called GNEN-1. Primary tumor consisted of components of high-grade neuroendocrine carcinoma and adenocarcinoma. The GNEN-1 cell line was initiated from metastatic tumor cells of peritoneal fluid and expresses a purely neuroendocrine phenotype. The GNEN-1 cell line grows as monolayers and has retained the neuroendocrine phenotype with positivity for chromogranin A in immunohistochemistry. Electron microscopy showed cytoplasmic dense core granules and axon hillocks. The karyotype revealed alterations typical of both adenocarcinoma and neuroendocrine carcinoma such as trisomy 7 and 8. GNEN-1 cells were also positive for stanniocalcin-1, a marker of poor prognosis in gastric carcinomas. Expression of several markers related to neuroendocrine tumors was found. There have been only a few studies on the pathogenesis of MINEN and management of the disease due to the rarity of this tumor type. Here we describe for the first time an immortalized cell line derived from mixed gastric NEN. The GNEN-1 line offers a tool for future research on gastric NEN.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mixed Adenoneuroendocrine Carcinomas (MANECs) of the Gastrointestinal Tract: An Update

          The systematic application of immunohistochemical techniques to the study of tumors has led to the recognition that neuroendocrine cells occur rather frequently in exocrine neoplasms of the gut. It is now well known that there is a wide spectrum of combinations of exocrine and neuroendocrine components, ranging from adenomas or carcinomas with interspersed neuroendocrine cells at one extreme to classical neuroendocrine tumors with a focal exocrine component at the other. In addition, both exocrine and neuroendocrine components can have different morphological features ranging, for the former, from adenomas to adenocarcinomas with different degrees of differentiation and, for the latter, from well differentiated to poorly differentiated neuroendocrine tumors. However, although this range of combinations of neuroendocrine and exocrine components is frequently observed in routine practice, mixed exocrine-neuroendocrine carcinomas, now renamed as mixed adenoneuroendocrine carcinomas (MANECs), are rare; these are, by definition, neoplasms in which each component represents at least 30% of the lesion. Gastrointestinal MANECs can be stratified in different prognostic categories according to the grade of malignancy of each component. The present paper is an overview of the main clinicopathological, morphological, immunohistochemical and molecular features of this specific rare tumor type.
            • Record: found
            • Abstract: found
            • Article: not found

            The zinc-finger factor Insm1 (IA-1) is essential for the development of pancreatic beta cells and intestinal endocrine cells.

            The pancreatic and intestinal primordia contain epithelial progenitor cells that generate many cell types. During development, specific programs of gene expression restrict the developmental potential of such progenitors and promote their differentiation. The Insm1 (insulinoma-associated 1, IA-1) gene encodes a Zinc-finger factor that was discovered in an insulinoma cDNA library. We show that pancreatic and intestinal endocrine cells express Insm1 and require Insm1 for their development. In the pancreas of Insm1 mutant mice, endocrine precursors are formed, but only few insulin-positive beta cells are generated. Instead, endocrine precursor cells accumulate that express none of the pancreatic hormones. A similar change is observed in the development of intestine, where endocrine precursor cells are formed but do not differentiate correctly. A hallmark of endocrine cell differentiation is the accumulation of proteins that participate in secretion and vesicle transport, and we find many of the corresponding genes to be down-regulated in Insm1 mutant mice. Insm1 thus controls a gene expression program that comprises hormones and proteins of the secretory machinery. Our genetic analysis has revealed a key role of Insm1 in differentiation of pancreatic and intestinal endocrine cells.
              • Record: found
              • Abstract: found
              • Article: found

              Mixed Adenoneuroendocrine Carcinomas of the Gastrointestinal Tract: Targeted Next-Generation Sequencing Suggests a Monoclonal Origin of the Two Components

              Background: Mixed adenoneuroendocrine carcinomas (MANECs) of the gastrointestinal tract are rare neoplasms characterized by coexisting exocrine and neuroendocrine neoplastic components. MANECs' histogenetic classification and molecular characterization remain unclear, significantly affecting the identification of innovative therapeutic options for these tumors. Methods: The exocrine and neuroendocrine components of 6 gastrointestinal MANECs were microdissected and subjected to the simultaneous mutation assessment in selected regions of 54 cancer-associated genes using Ion Torrent semiconductor-based next-generation sequencing. Sanger sequencing and immunohistochemistry were used as validation of the mutational status. Results: A total of 20 driver gene somatic mutations were observed among the 12 neoplastic components investigated. In 11 of 12 (91.7%) samples, at least one mutation was detected; 7 samples (58.3%) were found to have multiple mutations. TP53 gene mutations were the most frequent genetic alterations observed in the series, occurring in 11/12 samples (91.7%). Somatic mutations in other genes were detected at lower frequencies: ATM , CTNNB1 , ERBB4 , JAK3 , KDR , KRAS , RB1 . Conclusions: Five of the 6 MANECs presented an overlapping mutational profile in both components, suggesting a monoclonal origin of the two MANEC components.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                04 August 2021
                01 September 2021
                : 10
                : 9
                : 1055-1064
                Affiliations
                [1 ]Department of Pathology , University of Helsinki, Helsinki, Finland
                [2 ]HUH Diagnostic Center and Helsinki University Hospital , Helsinki, Finland
                Author notes
                Correspondence should be addressed to K W Fagerstedt: klaus.wj.fagerstedt@ 123456helsinki.fi
                Author information
                http://orcid.org/0000-0001-8044-2930
                Article
                EC-21-0206
                10.1530/EC-21-0206
                8428042
                34348234
                92fccbd0-0162-45f2-bb96-978fbf44fe20
                © The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 02 August 2021
                : 04 August 2021
                Categories
                Research

                minen,gastric cancer,neuroendocrine,cell line,stc1
                minen, gastric cancer, neuroendocrine, cell line, stc1

                Comments

                Comment on this article

                Related Documents Log