155
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atg9 vesicles are an important membrane source during early steps of autophagosome formation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atg9-containing vesicles assemble to the preautophagosomal structure and eventually are incorporated into the autophagosomal outer membrane.

          Abstract

          During the process of autophagy, cytoplasmic materials are sequestered by double-membrane structures, the autophagosomes, and then transported to a lytic compartment to be degraded. One of the most fundamental questions about autophagy involves the origin of the autophagosomal membranes. In this study, we focus on the intracellular dynamics of Atg9, a multispanning membrane protein essential for autophagosome formation in yeast. We found that the vast majority of Atg9 existed on cytoplasmic mobile vesicles (designated Atg9 vesicles) that were derived from the Golgi apparatus in a process involving Atg23 and Atg27. We also found that only a few Atg9 vesicles were required for a single round of autophagosome formation. During starvation, several Atg9 vesicles assembled individually into the preautophagosomal structure, and eventually, they are incorporated into the autophagosomal outer membrane. Our findings provide conclusive linkage between the cytoplasmic Atg9 vesicles and autophagosomal membranes and offer new insight into the requirement for Atg9 vesicles at the early step of autophagosome formation.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          A ubiquitin-like system mediates protein lipidation.

          Autophagy is a dynamic membrane phenomenon for bulk protein degradation in the lysosome/vacuole. Apg8/Aut7 is an essential factor for autophagy in yeast. We previously found that the carboxy-terminal arginine of nascent Apg8 is removed by Apg4/Aut2 protease, leaving a glycine residue at the C terminus. Apg8 is then converted to a form (Apg8-X) that is tightly bound to the membrane. Here we report a new mode of protein lipidation. Apg8 is covalently conjugated to phosphatidylethanolamine through an amide bond between the C-terminal glycine and the amino group of phosphatidylethanolamine. This lipidation is mediated by a ubiquitination-like system. Apg8 is a ubiquitin-like protein that is activated by an E1 protein, Apg7 (refs 7, 8), and is transferred subsequently to the E2 enzymes Apg3/Aut1 (ref. 9). Apg7 activates two different ubiquitin-like proteins, Apg12 (ref. 10) and Apg8, and assigns them to specific E2 enzymes, Apg10 (ref. 11) and Apg3, respectively. These reactions are necessary for the formation of Apg8-phosphatidylethanolamine. This lipidation has an essential role in membrane dynamics during autophagy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamics and diversity in autophagy mechanisms: lessons from yeast.

            Autophagy is a fundamental function of eukaryotic cells and is well conserved from yeast to humans. The most remarkable feature of autophagy is the synthesis of double membrane-bound compartments that sequester materials to be degraded in lytic compartments, a process that seems to be mechanistically distinct from conventional membrane traffic. The discovery of autophagy in yeast and the genetic tractability of this organism have allowed us to identify genes that are responsible for this process, which has led to the explosive growth of this research field seen today. Analyses of autophagy-related (Atg) proteins have unveiled dynamic and diverse aspects of mechanisms that underlie membrane formation during autophagy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondria supply membranes for autophagosome biogenesis during starvation.

              Starvation-induced autophagosomes engulf cytosol and/or organelles and deliver them to lysosomes for degradation, thereby resupplying depleted nutrients. Despite advances in understanding the molecular basis of this process, the membrane origin of autophagosomes remains unclear. Here, we demonstrate that, in starved cells, the outer membrane of mitochondria participates in autophagosome biogenesis. The early autophagosomal marker, Atg5, transiently localizes to punctae on mitochondria, followed by the late autophagosomal marker, LC3. The tail-anchor of an outer mitochondrial membrane protein also labels autophagosomes and is sufficient to deliver another outer mitochondrial membrane protein, Fis1, to autophagosomes. The fluorescent lipid NBD-PS (converted to NBD-phosphotidylethanolamine in mitochondria) transfers from mitochondria to autophagosomes. Photobleaching reveals membranes of mitochondria and autophagosomes are transiently shared. Disruption of mitochondria/ER connections by mitofusin2 depletion dramatically impairs starvation-induced autophagy. Mitochondria thus play a central role in starvation-induced autophagy, contributing membrane to autophagosomes. Copyright (c) 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                23 July 2012
                : 198
                : 2
                : 219-233
                Affiliations
                [1 ]Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan
                [2 ]Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center, Osaka 565-0874, Japan
                [3 ]Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
                Author notes
                Correspondence to Yoshinori Ohsumi: yohsumi@ 123456iri.titech.ac.jp

                T. Sekito’s present address is Dept. of Applied Bioresource Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.

                Article
                201202061
                10.1083/jcb.201202061
                3410421
                22826123
                9300bc34-8451-4aed-9b1d-449687be1402
                © 2012 Yamamoto et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 13 February 2012
                : 18 June 2012
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article