21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Social big data: Recent achievements and new challenges

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • The paper presents the methodologies on information fusion for social media.

          • The methodologies, frameworks, and software used to work with big data are given.

          • The state of the art in the data analytic techniques on social big data is provided.

          • Social big data applications for various domains are described and analyzed.

          Abstract

          Big data has become an important issue for a large number of research areas such as data mining, machine learning, computational intelligence, information fusion, the semantic Web, and social networks. The rise of different big data frameworks such as Apache Hadoop and, more recently, Spark, for massive data processing based on the MapReduce paradigm has allowed for the efficient utilisation of data mining methods and machine learning algorithms in different domains. A number of libraries such as Mahout and SparkMLib have been designed to develop new efficient applications based on machine learning algorithms. The combination of big data technologies and traditional machine learning algorithms has generated new and interesting challenges in other areas as social media and social networks. These new challenges are focused mainly on problems such as data processing, data storage, data representation, and how data can be used for pattern mining, analysing user behaviours, and visualizing and tracking data, among others. In this paper, we present a revision of the new methodologies that is designed to allow for efficient data mining and information fusion from social media and of the new applications and frameworks that are currently appearing under the “umbrella” of the social networks, social media and big data paradigms.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Modularity and community structure in networks

          M. Newman (2006)
          Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Community structure in social and biological networks

            A number of recent studies have focused on the statistical properties of networked systems such as social networks and the World-Wide Web. Researchers have concentrated particularly on a few properties which seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this paper, we highlight another property which is found in many networks, the property of community structure, in which network nodes are joined together in tightly-knit groups between which there are only looser connections. We propose a new method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer generated and real-world graphs whose community structure is already known, and find that it detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well-known - a collaboration network and a food web - and find that it detects significant and informative community divisions in both cases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Community detection in graphs

              The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.
                Bookmark

                Author and article information

                Contributors
                Journal
                Inf Fusion
                Inf Fusion
                An International Journal on Information Fusion
                Elsevier B.V.
                1566-2535
                1872-6305
                28 August 2015
                March 2016
                28 August 2015
                : 28
                : 45-59
                Affiliations
                [a ]Computer Science Department, Universidad Autónoma de Madrid, Spain
                [b ]Department of Computer Engineering, Chung-Ang University, Seoul, Republic of Korea
                Author notes
                Article
                S1566-2535(15)00078-0
                10.1016/j.inffus.2015.08.005
                7106299
                32288689
                930a1eff-d442-4bcb-b85e-96b153644e37
                Copyright © 2015 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 23 July 2015
                : 7 August 2015
                : 17 August 2015
                Categories
                Article

                big data,data mining,social media,social networks,social-based frameworks and applications

                Comments

                Comment on this article