17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hopping in hypogravity—A rationale for a plyometric exercise countermeasure in planetary exploration missions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Moon and Mars are considered to be future targets for human space explorations. The gravity level on the Moon and Mars amount to 16% and 38%, respectively, of Earth’s gravity. Mechanical loading during the anticipated habitual activities in these hypogravity environments will most likely not be sufficient to maintain physiological integrity of astronauts unless additional exercise countermeasures are performed. Current microgravity exercise countermeasures appear to attenuate but not prevent ‘space deconditioning’. However, plyometric exercises (hopping and whole body vibration) have shown promise in recent analogue bed rest studies and may be options for space exploration missions where resources will be limited compared to the ISS. This paper therefore tests the hypothesis that plyometric hop exercise in hypogravity can generate sufficient mechanical stimuli to prevent musculoskeletal deconditioning. It has been suggested that hypogravity-induced reductions in peak ground reaction force (peak vertical GRF) can be offset by increases in hopping height. Therefore, this study investigated the effects of simulated hypogravity (0.16G, 0.27G, 0.38G, and 0.7G) upon sub-maximal plyometric hopping on the Verticalised Treadmill Facility, simulating different hypogravity levels. Results show that peak vertical GRF are negatively related to simulated gravity level, but positively to hopping height. Contact times decreased with increasing gravity level but were not influenced through hopping height. In contrast, flight time increased with decreasing gravity levels and increasing hopping height ( P < 0.001). The present data suggest that the anticipated hypogravity-related reductions of musculoskeletal forces during normal walking can be compensated by performing hops and therefore support the idea of plyometric hopping as a robust and resourceful exercise countermeasure in hypogravity. As maximal hop height was constrained on the VTF further research is needed to determine whether similar relationships are evident during maximal hops and other forms of jumping.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training.

          Plyometric training (PLY) is a very popular form of physical conditioning of healthy individuals that has been extensively studied over the last 3 decades. In this article, we critically review the available literature related to lower-body PLY and its effects on human neural and musculoskeletal systems, athletic performance and injury prevention. We also considered studies that combined lower-body PLY with other popular training modalities, as well as studies that applied PLY on non-rigid surfaces. The available evidence suggests that PLY, either alone or in combination with other typical training modalities, elicits numerous positive changes in the neural and musculoskeletal systems, muscle function and athletic performance of healthy individuals. Specifically, the studies have shown that long-term PLY (i.e. 3-5 sessions a week for 5-12 months) represents an effective training method for enhancing bone mass in prepubertal/early pubertal children, young women and premenopausal women. Furthermore, short-term PLY (i.e. 2-3 sessions a week for 6-15 weeks) can change the stiffness of various elastic components of the muscle-tendon complex of plantar flexors in both athletes and non-athletes. Short-term PLY also improves the lower-extremity strength, power and stretch-shortening cycle (SSC) muscle function in healthy individuals. These adaptive changes in neuromuscular function are likely the result of (i) an increased neural drive to the agonist muscles; (ii) changes in the muscle activation strategies (i.e. improved intermuscular coordination); (iii) changes in the mechanical characteristics of the muscle-tendon complex of plantar flexors; (iv) changes in muscle size and/or architecture; and (v) changes in single-fibre mechanics. Our results also show that PLY, either alone or in combination with other training modalities, has the potential to (i) enhance a wide range of athletic performance (i.e. jumping, sprinting, agility and endurance performance) in children and young adults of both sexes; and (ii) to reduce the risk of lower-extremity injuries in female athletes. Finally, available evidence suggests that short-term PLY on non-rigid surfaces (i.e. aquatic- or sand-based PLY) could elicit similar increases in jumping and sprinting performance as traditional PLY, but with substantially less muscle soreness. Although many issues related to PLY remain to be resolved, the results of this review allow us to recommend the use of PLY as a safe and effective training modality for improving lower-extremity muscle function and functional performance of healthy individuals. For performance enhancement and injury prevention in competitive sports, we recommend an implementation of PLY into a well designed, sport-specific physical conditioning programme.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS

            Background To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA’s individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA’s eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. Results With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33–46 %), whilst treadmill running (42–33 %) and cycle ergometry (26–20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Conclusion Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues with novel exercise hardware (e.g. the treadmill harness). Inconsistency in hardware and individualised support concepts across time limit the comparability of results from different crewmembers, and questions regarding the difference between cycling and running in µG versus identical exercise here on Earth, and other factors that might influence in-flight exercise performance, still require further investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms.

              The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists.(1).
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: Writing – original draft
                Role: ConceptualizationRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: InvestigationRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: Data curationRole: InvestigationRole: MethodologyRole: SoftwareRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: SoftwareRole: VisualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                13 February 2019
                2019
                : 14
                : 2
                : e0211263
                Affiliations
                [1 ] European Space Agency, European Astronaut Centre, Space Medicine Team (HRE-OM), Cologne, Germany
                [2 ] KBRwyle GmbH, Cologne, Germany
                [3 ] King’s College London, Centre of Applied Physiological Sciences (CHAPS), London, United Kingdom
                [4 ] Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
                [5 ] Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
                [6 ] Centre for Health and Integrative Physiology in Space (CHIPS), Cologne, Germany
                [7 ] Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
                Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, ITALY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-3015-3468
                http://orcid.org/0000-0003-3420-7977
                http://orcid.org/0000-0002-5173-8916
                Article
                PONE-D-18-16424
                10.1371/journal.pone.0211263
                6373893
                30759113
                93127702-4b48-4196-8a37-163ecfba44cf
                © 2019 Weber et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 June 2018
                : 10 January 2019
                Page count
                Figures: 4, Tables: 1, Pages: 12
                Funding
                The study has been funded by ESA’s Space Medicine Team (HRE-OM) and is part of the ‘Moon Gym Project’.
                Categories
                Research Article
                Biology and Life Sciences
                Biomechanics
                Musculoskeletal Mechanics
                Biology and Life Sciences
                Physiology
                Muscle Physiology
                Musculoskeletal Mechanics
                Medicine and Health Sciences
                Physiology
                Muscle Physiology
                Musculoskeletal Mechanics
                Physical Sciences
                Physics
                Gravitation
                Biology and Life Sciences
                Physiology
                Biological Locomotion
                Walking
                Medicine and Health Sciences
                Physiology
                Biological Locomotion
                Walking
                Medicine and Health Sciences
                Public and Occupational Health
                Physical Activity
                Physical Fitness
                Exercise
                Medicine and Health Sciences
                Sports and Exercise Medicine
                Exercise
                Biology and Life Sciences
                Sports Science
                Sports and Exercise Medicine
                Exercise
                Engineering and Technology
                Mechanical Engineering
                Pistons
                Biology and Life Sciences
                Physiology
                Biological Locomotion
                Running
                Medicine and Health Sciences
                Physiology
                Biological Locomotion
                Running
                Physical Sciences
                Astronomical Sciences
                Celestial Objects
                Moons
                Physical Sciences
                Astronomical Sciences
                Planetary Sciences
                Moons
                Biology and Life Sciences
                Physiology
                Biological Locomotion
                Jumping
                Medicine and Health Sciences
                Physiology
                Biological Locomotion
                Jumping
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article