9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework

      , , ,
      Paleobiology
      Cambridge University Press (CUP)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The estimation of origination and extinction rates and their temporal variation is central to understanding diversity patterns and the evolutionary history of clades. The fossil record provides the only direct evidence of extinction and biodiversity changes through time and has long been used to infer the dynamics of diversity changes in deep time. The software PyRate implements a Bayesian framework to analyze fossil occurrence data to estimate the rates of preservation, origination, and extinction while incorporating several sources of uncertainty. Building upon this framework, we present a suite of methodological advances including more complex and realistic models of preservation and the first likelihood-based test to compare the fit across different models. Further, we develop a new reversible jump Markov chain Monte Carlo algorithm to estimate origination and extinction rates and their temporal variation, which provides more reliable results and includes an explicit estimation of the number and temporal placement of statistically significant rate changes. Finally, we implement a new C++ library that speeds up the analyses by orders of magnitude, therefore facilitating the application of the PyRate methods to large data sets. We demonstrate the new functionalities through extensive simulations and with the analysis of a large data set of Cenozoic marine mammals. We compare our analytical framework against two widely used alternative methods to infer origination and extinction rates, revealing that PyRate decisively outperforms them across a range of simulated data sets. Our analyses indicate that explicit statistical model testing, which is often neglected in fossil-based macroevolutionary analyses, is crucial to obtain accurate and robust results.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Mass extinctions in the marine fossil record.

          A new compilation of fossil data on invertebrate and vertebrate families indicates that four mass extinctions in the marine realm are statistically distinct from background extinction levels. These four occurred late in the Ordovician, Permian, Triassic, and Cretaceous periods. A fifth extinction event in the Devonian stands out from the background but is not statistically significant in these data. Background extinction rates appear to have declined since Cambrian time, which is consistent with the prediction that optimization of fitness should increase through evolutionary time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees.

            Phylogenetic comparative methods are essential for addressing evolutionary hypotheses with interspecific data. The scale and scope of such data have increased dramatically in the past few years. Many existing approaches are either computationally infeasible or inappropriate for data of this size. To address both of these problems, we present geiger v2.0, a complete overhaul of the popular R package geiger. We have reimplemented existing methods with more efficient algorithms and have developed several new approaches for accomodating heterogeneous models and data types.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The fossilized birth-death process for coherent calibration of divergence-time estimates.

              Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data--most commonly, fossil age estimates--are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the "fossilized birth-death" (FBD) process--a model for calibrating divergence time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the Late Miocene to Middle Pliocene.
                Bookmark

                Author and article information

                Journal
                Paleobiology
                Paleobiology
                Cambridge University Press (CUP)
                0094-8373
                1938-5331
                September 2019
                September 12 2019
                September 2019
                : 45
                : 4
                : 546-570
                Article
                10.1017/pab.2019.23
                931aa7d8-0a4a-4445-b936-ed047b5e8109
                © 2019

                http://creativecommons.org/licenses/by-nc-sa/4.0/

                History

                Comments

                Comment on this article