14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Origin and Control of Polyacrylonitrile Alignments on Carbon Nanotube and Graphene Nanoribbon

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While one of the most promising applications of carbon nanotubes (CNTs) is to enhance polymer orientation and crystallization to achieve advanced carbon fibers, the successful realization of this goal has been hindered by the insufficient atomistic understanding of polymer-CNT interfaces. We herein theoretically study polyacrylonitrile (PAN)-CNT hybrid structures as a representative example of polymer-CNT composites. Based on density-functional theory calculations, we first find that the relative orientation of polar PAN nitrile groups with respect to the CNT surface is the key factor that determines the PAN-CNT interface energetics and the lying-down PAN configurations are much more preferable than their standing-up counterparts. The CNT curvature is identified as another important factor, giving the largest binding energy in the zero-curvature graphene limit. Charge transfer analysis explains the unique tendency of linear PAN alignments on the CNT surface and the possibility of ordered PAN-PAN assembly. Next, performing large-scale molecular dynamics simulations, we show that the desirable linear PAN-CNT alignment can be achieved even for relatively large initial misorientations and further demonstrate that graphene nanoribbons are a promising carbon nano-reinforcement candidate. The microscopic understanding accumulated in this study will provide design guidelines for the development of next-generation carbon nanofibers.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Polymer/carbon nanotube nano composite fibers--a review.

          Carbon nanotubes (CNTs) are regarded as ideal filler materials for polymeric fiber reinforcement due to their exceptional mechanical properties and 1D cylindrical geometry (nanometer-size diameter and very high aspect ratio). The reported processing conditions and property improvements of CNT reinforced polymeric fiber are summarized in this review. Because of CNT polymer interaction, polymer chains in CNTs' vicinity (interphase) have been observed to have more compact packing, higher orientation, and better mechanical properties than bulk polymer. Evidences of the existence of interphase polymers in composite fibers, characterizations of their structures, and fiber properties are summarized and discussed. Implications of interphase phenomena on a broader field of fiber and polymer processing to make much stronger materials are now in the early stages of exploration. Beside improvements in tensile properties, the presence of CNTs in polymeric fibers strongly affects other properties, such as thermal stability, thermal transition temperature, fiber thermal shrinkage, chemical resistance, electrical conductivity, and thermal conductivity. This paper will be helpful to better understand the current status of polymer/CNT fibers, especially high-performance fibers, and to find the most suitable processing techniques and conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes.

            The goal of this study is to explore the interface between single-walled carbon nanotubes (SWCNTs) and polymer chains with flexible backbones in vacuo via molecular dynamics (MD) simulations. These simulations investigate whether the polymers prefer to wrap the SWCNT, what the molecular details of that interface are, and how the interfacial interaction is affected by the chemical composition and structure of the polymer. The simulations indicate that polymers with flexible backbones tend to wrap around the SWCNT, although not in any distinct conformation; no helical conformations were observed. PAN with the cyano side group showed a preference for transversing the length of the SWCNT rather than wrapping around its diameter, and the cyano group prefers to align parallel to the SWCNT surface. Flexible backbone polymers with bulky and aromatic side groups such as PS and PMMA prefer intrachain coiling rather than wrapping the SWCNT. Moment of inertia plots as a function of time quantify the interplay between intrachain coiling and adsorption to the SWCNT surface.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrospun composite nanofiber yarns containing oriented graphene nanoribbons.

              The graphene nanoribbon (GNR)/carbon composite nanofiber yarns were prepared by electrospinning from poly(acrylonitrile) (PAN) containing graphene oxide nanoribbons (GONRs), and successive twisting and carbonization. The electrospinning process can exert directional shear force coupling with the external electric field to the flow of the spinning solution. During electrospinning, the well-dispersed GONRs were highly oriented along the fiber axis in an electrified thin liquid jet. The addition of GONRs at a low weight fraction significantly improved the mechanical properties of the composite nanofiber yarns. In addition, the carbonization of the matrix polymer enhanced not only the mechanical but also the electrical properties of the composites. The electrical conductivity of the carbonized composite yarns containing 0.5 wt % GONR showed the maximum value of 165 S cm(-1). It is larger than the maximum value of the reported electrospun carbon composite yarns. Interestingly, it is higher than the conductivities of both the PAN-based pristine CNF yarns (77 S cm(-1)) and the monolayer GNRs (54 S cm(-1)). These results and Raman spectroscopy supported the hypothesis that the oriented GONRs contained in the PAN nanofibers effectively functioned as not only the 1-D nanofiller but also the nanoplatelet promoter of stabilization and template agent for the carbonization.
                Bookmark

                Author and article information

                Journal
                03 January 2018
                Article
                1801.01009
                931d33a9-ce08-479a-8bb5-d2f3c511a4ea

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                11 pages, 4 figures
                cond-mat.mtrl-sci

                Comments

                Comment on this article