240
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This article gives a very brief overview of the antibiotic era, beginning from the discovery of first antibiotics until the present day situation, which is marred by the emergence of hard-to-treat multiple antibiotic-resistant infections. The ways of responding to the antibiotic resistance challenges such as the development of novel strategies in the search for new antimicrobials, designing more effective preventive measures and, importantly, better understanding the ecology of antibiotics and antibiotic resistance are discussed. The expansion of conceptual frameworks based on recent developments in the field of antimicrobials, antibiotic resistance, and chemotherapy is also discussed.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study

          Summary Background Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by New Delhi metallo-β-lactamase 1 (NDM-1) are potentially a major global health problem. We investigated the prevalence of NDM-1, in multidrug-resistant Enterobacteriaceae in India, Pakistan, and the UK. Methods Enterobacteriaceae isolates were studied from two major centres in India—Chennai (south India), Haryana (north India)—and those referred to the UK's national reference laboratory. Antibiotic susceptibilities were assessed, and the presence of the carbapenem resistance gene bla NDM-1 was established by PCR. Isolates were typed by pulsed-field gel electrophoresis of XbaI-restricted genomic DNA. Plasmids were analysed by S1 nuclease digestion and PCR typing. Case data for UK patients were reviewed for evidence of travel and recent admission to hospitals in India or Pakistan. Findings We identified 44 isolates with NDM-1 in Chennai, 26 in Haryana, 37 in the UK, and 73 in other sites in India and Pakistan. NDM-1 was mostly found among Escherichia coli (36) and Klebsiella pneumoniae (111), which were highly resistant to all antibiotics except to tigecycline and colistin. K pneumoniae isolates from Haryana were clonal but NDM-1 producers from the UK and Chennai were clonally diverse. Most isolates carried the NDM-1 gene on plasmids: those from UK and Chennai were readily transferable whereas those from Haryana were not conjugative. Many of the UK NDM-1 positive patients had travelled to India or Pakistan within the past year, or had links with these countries. Interpretation The potential of NDM-1 to be a worldwide public health problem is great, and co-ordinated international surveillance is needed. Funding European Union, Wellcome Trust, and Wyeth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drugs for bad bugs: confronting the challenges of antibacterial discovery.

            The sequencing of the first complete bacterial genome in 1995 heralded a new era of hope for antibacterial drug discoverers, who now had the tools to search entire genomes for new antibacterial targets. Several companies, including GlaxoSmithKline, moved back into the antibacterials area and embraced a genomics-derived, target-based approach to screen for new classes of drugs with novel modes of action. Here, we share our experience of evaluating more than 300 genes and 70 high-throughput screening campaigns over a period of 7 years, and look at what we learned and how that has influenced GlaxoSmithKline's antibacterials strategy going forward.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotics and antibiotic resistance genes in natural environments.

              The large majority of antibiotics currently used for treating infections and the antibiotic resistance genes acquired by human pathogens each have an environmental origin. Recent work indicates that the function of these elements in their environmental reservoirs may be very distinct from the "weapon-shield" role they play in clinical settings. Changes in natural ecosystems, including the release of large amounts of antimicrobials, might alter the population dynamics of microorganisms, including selection of resistance, with consequences for human health that are difficult to predict.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front. Microbio.
                Frontiers in Microbiology
                Frontiers Research Foundation
                1664-302X
                29 October 2010
                08 December 2010
                2010
                : 1
                : 134
                Affiliations
                [1] 1simpleRowett Institute of Nutrition and Health, University of Aberdeen Aberdeen, UK
                Author notes

                Edited by: Jose L. Martinez, Centro Nacional de Biotecnología, Spain

                Reviewed by: Morten Otto Alexander Sommer, Technical University of Denmark, Denmark; Jose L. Martinez, Centro Nacional de Biotecnología, Spain

                *Correspondence: Rustam I. Aminov, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK. e-mail: r.aminov@ 123456abdn.ac.uk

                This article was submitted to Frontiers in Antimicrobials, Resistance and Chemotherapy, a specialty of Frontiers in Microbiology.

                Article
                10.3389/fmicb.2010.00134
                3109405
                21687759
                93216faf-fec4-4d83-a8a1-9a88f85c2549
                Copyright © 2010 Aminov.

                This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

                History
                : 29 September 2010
                : 17 November 2010
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 77, Pages: 7, Words: 7327
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                prevention of antibiotic resistance,antibiotic resistance,history of antibiotic discovery,novel antimicrobials,environmental resistome

                Comments

                Comment on this article