+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Time-dependent hyperreactivity to phenylephrine in aorta from untreated diabetic rats: role of prostanoids and calcium mobilization.

      Vascular Pharmacology

      physiology, Animals, Aorta, Thoracic, drug effects, metabolism, Calcium, Diabetes Mellitus, Experimental, physiopathology, Dose-Response Relationship, Drug, In Vitro Techniques, Male, Phenylephrine, pharmacology, Prostaglandins, biosynthesis, secretion, Rats, Rats, Wistar, Time Factors, Vasoconstriction

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Diabetes alters vascular smooth muscle contractility. Changes in reactivity to phenylephrine (Phe) in aortas from controls and untreated 1- and 4-week streptozotocin (STZ)-induced diabetic rats were investigated. In 1-week diabetic (DB1) aortas, the maximum response (E(max)) and sensitivity (pD(2)) to Phe were similar to controls (CT1), but in 4-week diabetic (DB4) aortas, the E(max) for Phe was increased compared to CT4 aortas (E(max), DB4: 125+/-8.4% vs. CT4: 89.8+/-4.5%, P<.001). Endothelial denudation increased the response to Phe, and E(max) was increased in the DB4 aortas compared to CT4 (E(max), DB4: 156+/-4.2% vs. CT4: 125+/-3.8%, P<.001). Pretreatment of CT4 and DB4 aortas with indomethacin reduced E(max) and pD(2) for Phe. After indomethacin treatment, no differences in E(max) and pD(2) to Phe were observed in either group. SQ 29548 did not alter the Phe actions in CT4 aortas. However, in DB4 aortas, E(max) was reduced to control level. CT4 and DB4 aortas incubated in free-Ca(2+) solution plus Phe, contracted upon addition of CaCl(2), this response was increased in DB4 aortas. No changes were observed for acetylcholine (ACh) or sodium nitroprusside (SNP) responses. Nitric oxide (NO) release in response to Phe determined by acute L-NAME administration showed no differences in the percentage increase of the contraction in CT1 and DB1 aortas, but was enhanced in DB4 aortas. Results suggested that diabetes induces time-dependent changes in the vascular reactivity to Phe. This response is not related to a reduction of endothelium-derived NO but might be due to an increase in prostaglandin H(2) (PGH(2))/thromboxane A(2) (TxA(2)) and/or an enhanced extracellular Ca(2+) influx.

          Related collections

          Author and article information



          Comment on this article