11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Antimalarial Activity of the Leaf Latex and TLC Isolates from Aloe megalacantha Baker in Plasmodium berghei Infected Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malaria is a devastating parasitic disease which caused around 216 million cases and 445,000 deaths worldwide in 2016. This might be attributed to a wide spread of drug resistant parasites. The plant Aloe megalacantha is indigenous to Ethiopia where the sap of the leaves is traditionally used for the treatment of malaria. This study was aimed at evaluating the antimalarial effect of leaf latex and isolates obtained from Aloe megalacantha against chloroquine sensitive Plasmodium berghei ANKA strain in Swiss albino mice. Peters' 4-day suppressive test method was used to test the antimalarial activity of both leaves latex and isolates. Three isolates were obtained using thin layer chromatography and were coded as AM 1, AM 2, and AM 3 in ascending order of their retention factor. After treatment of Plasmodium berghei infected mice with leaf latex of Aloe megalacantha for four days at 100, 200, and 400 mg/kg, it shows 30.3%, 43.4%, and 56.4% suppression of the parasite growth, respectively. 32.3%, 51.3%, and 67.4% chemosuppression after treatment with AM 1, 39.8%, 50.6%, and 64.2% chemosuppression after treatment with AM 2, and 52.6%, 69.4%, and 79.6% chemosuppression after treatment with AM 3 were observed at doses of 100, 200, and 400 mg/kg/day, respectively. The observed parasite suppression of leaves latex and isolates was statistically significant (P<0.05) as compared to negative control. Moreover, both the leaves latex and isolates were also observed to prevent Plasmodium berghei induced body weight loss and hypothermia and increased the survival time of Plasmodium berghei infected mice as compared to the negative control. Hence, the present study supports the traditional claim of the plant for the treatment of malaria.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Changes in health workers' malaria diagnosis and treatment practices in Kenya

          Background Change of Kenyan treatment policy for uncomplicated malaria from sulphadoxine-pyrimethamine to artemether-lumefantrine (AL) was accompanied by revised recommendations promoting presumptive malaria diagnosis in young children and, wherever possible, parasitological diagnosis and adherence to test results in older children and adults. Three years after the policy implementation, health workers' adherence to malaria diagnosis and treatment recommendations was evaluated. Methods A national cross-sectional, cluster sample survey was undertaken at public health facilities. Data were collected using quality-of-care assessment methods. Analysis was restricted to facilities with AL in stock. Main outcomes were diagnosis and treatment practices for febrile outpatients stratified by age, availability of diagnostics, use of malaria diagnostic tests, and test result. Results The analysis included 1,096 febrile patients (567 aged <5 years and 529 aged ≥5 years) at 88 facilities with malaria diagnostics, and 880 febrile patients (407 aged <5 years and 473 aged ≥5 years) at 71 facilities without malaria diagnostic capacity. At all facilities, 19.8% of young children and 28.7% of patients aged ≥5 years were tested, while at facilities with diagnostics, 33.5% and 53.7% were respectively tested in each age group. Overall, AL was prescribed for 63.6% of children aged <5 years and for 65.0% of patients aged ≥5 years, while amodiaquine or sulphadoxine-pyrimethamine monotherapies were prescribed for only 2.0% of children and 3.9% of older children and adults. In children aged <5 years, AL was prescribed for 74.7% of test positive, 40.4% of test negative and 60.7% of patients without test performed. In patients aged ≥5 years, AL was prescribed for 86.7% of test positive, 32.8% of test negative and 58.0% of patients without test performed. At least one anti-malarial treatment was prescribed for 56.6% of children and 50.4% of patients aged ≥5 years with a negative test result. Conclusions Overall, malaria testing rates were low and, despite different age-specific recommendations, only moderate differences in testing rates between the two age groups were observed at facilities with available diagnostics. In both age groups, AL use prevailed, and prior ineffective anti-malarial treatments were nearly non-existent. The large majority of test positive patients were treated with recommended AL; however, anti-malarial treatments for test negative patients were widespread, with AL being the dominant choice. Recent change of diagnostic policy to universal testing in Kenya is an opportunity to improve upon the quality of malaria case management. This will be, however, dependent upon the delivery of a comprehensive case management package including large scale deployment of diagnostics, good quality of training, post-training follow-up, structured supervisory visits, and more intense monitoring.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India

            Background Himalayan forests are the most important source of medicinal plants and with useful species for the local people. Kedarnath Wildlife Sanctuary (KWLS) is situated in the interior part of the Garhwal Himalayan region. The presented study was carried out in Madhmeshwar area of KWLS for the ecological status of medicinal plants and further focused on the ethnomedicinal uses of these plants in the study area. Methods Ecological information about ethnomedicinal plants were collected using random quadrats in a random sampling technique along an altitudinal gradient in the KWLS. Information on medicinal properties of plants encountered in the present study was generated by questionnaire survey and was also compared with relevant literature. Results A total of 152 medicinally important plant species were reported, in which 103 were found herbs, 32 shrubs and 17 were tree species which represented 123 genera of 61 families. A total of 18 plant species fell into the rare, endangered (critically endangered) and vulnerable status categories. Conclusion The present study documented the traditional uses of medicinal plants, their ecological status and importance of these plants in the largest protected area of Garhwal Himalaya. This study can serve as baseline information on medicinal plants and could be helpful to further strengthen the conservation of this important resource.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa.

              The increasing prevalence and distribution of malaria has been attributed to a number of factors, one of them being the emergence and spread of drug resistant parasites. Efforts are now being directed towards the discovery and development of new chemically diverse antimalarial agents. The present study reports on the in vitro antiplasmodial activity of 134 plant taxa native to or naturalised in South Africa, representing 54 families, which were selected semi-quantitatively using weighted criteria. The plant extracts were tested for in vitro activity against a Plasmodium falciparum strain D10 using the parasite lactate dehydrogenase (pLDH) assay. Of the 134 species assayed, 49% showed promising antiplasmodial activity (IC(50)< or = 10 microg/ml), while 17% were found to be highly active (IC(50)< or = 5 microg/ml). Several plant species and genera were shown for the first time to possess in vitro antiplasmodial activity. These results support a rational rather than random approach to the selection of antiplasmodial screening candidates, and identify a number of promising taxa for further investigation as plant-based antimalarial agents.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2019
                14 April 2019
                14 April 2019
                : 2019
                : 6459498
                Affiliations
                Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia
                Author notes

                Academic Editor: Ian Cock

                Author information
                http://orcid.org/0000-0002-2301-1453
                Article
                10.1155/2019/6459498
                6487133
                932250c7-325a-4519-8f3e-b56e5baa04ff
                Copyright © 2019 Gebretsadkan Hintsa et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 October 2018
                : 19 March 2019
                Funding
                Funded by: MU-NMBU
                Award ID: MU/CHS/1651/2017
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article