11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A microsomal fatty acid synthetase from the integument of Blattella germanica synthesizes methyl-branched fatty acids, precursors to hydrocarbon and contact sex pheromone

      , ,
      Archives of Biochemistry and Biophysics
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methyl-branched fatty acids present in the integument of the German cockroach, Blattella germanica, were identified by gas chromatography-mass spectrometry of their methyl esters and reduction products (alkanes) as n-3-, n-4-, n-5-, n-7-, n-8-, and n-9-monomethyl fatty acids and as n-5,9-, n-3,9-, and n-3,11-dimethyl fatty acids with 16 to 20 total carbons. These fatty acids have the same branching patterns as do the major hydrocarbons of this insect, including 3,11-dimethylnonacosane, the precursor to the major contact sex pheromone, and are presumed to be intermediates in hydrocarbon formation. A novel microsomal fatty acid synthetase (FAS) located in the integument of this insect incorporated [methyl-14C]methylmalonyl-CoA into methyl-branched fatty acids as demonstrated by radio-high-performance liquid chromatography. A cytosolic FAS is also present in the integument. Both the microsomal and the soluble FAS incorporated [methyl-14C]methylmalonyl-CoA into fatty acids, but only the microsomal FAS was able to efficiently use methylmalonyl-CoA as the sole elongating agent. This is the first report of the characterization of methyl-branched fatty acids from the integument of an insect and of an integumental microsomal FAS that incorporates methylmalonyl-CoA into branched fatty acids.

          Related collections

          Author and article information

          Journal
          Archives of Biochemistry and Biophysics
          Archives of Biochemistry and Biophysics
          Elsevier BV
          00039861
          March 1992
          March 1992
          : 293
          : 2
          : 333-341
          Article
          10.1016/0003-9861(92)90403-J
          1536569
          9323b67d-349d-47ca-ab71-7fc13f485759
          © 1992

          http://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article