21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease remains challenging. Here, we present an integrative approach to resolve the taxonomic and functional attributes of gastrointestinal microbiota at the metagenomic, metatranscriptomic and metaproteomic levels. We apply our methods to samples from four families with multiple cases of type 1 diabetes mellitus (T1DM). Analysis of intra- and inter-individual variation demonstrates that family membership has a pronounced effect on the structural and functional composition of the gastrointestinal microbiome. In the context of T1DM, consistent taxonomic differences were absent across families, but certain human exocrine pancreatic proteins were found at lower levels. The associated microbial functional signatures were linked to metabolic traits in distinct taxa. The methodologies and results provide a foundation for future large-scale integrated multi-omic analyses of the gastrointestinal microbiome in the context of host-microbe interactions in human health and disease.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Pathview: an R/Bioconductor package for pathway-based data integration and visualization

          Summary: Pathview is a novel tool set for pathway-based data integration and visualization. It maps and renders user data on relevant pathway graphs. Users only need to supply their data and specify the target pathway. Pathview automatically downloads the pathway graph data, parses the data file, maps and integrates user data onto the pathway and renders pathway graphs with the mapped data. Although built as a stand-alone program, Pathview may seamlessly integrate with pathway and functional analysis tools for large-scale and fully automated analysis pipelines. Availability: The package is freely available under the GPLv3 license through Bioconductor and R-Forge. It is available at http://bioconductor.org/packages/release/bioc/html/pathview.html and at http://Pathview.r-forge.r-project.org/. Contact: luo_weijun@yahoo.com Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Proteomics Identifications (PRIDE) database and associated tools: status in 2013

            The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              HMMER web server: 2015 update

              The HMMER website, available at http://www.ebi.ac.uk/Tools/hmmer/, provides access to the protein homology search algorithms found in the HMMER software suite. Since the first release of the website in 2011, the search repertoire has been expanded to include the iterative search algorithm, jackhmmer. The continued growth of the target sequence databases means that traditional tabular representations of significant sequence hits can be overwhelming to the user. Consequently, additional ways of presenting homology search results have been developed, allowing them to be summarised according to taxonomic distribution or domain architecture. The taxonomy and domain architecture representations can be used in combination to filter the results according to the needs of a user. Searches can also be restricted prior to submission using a new taxonomic filter, which not only ensures that the results are specific to the requested taxonomic group, but also improves search performance. The repertoire of profile hidden Markov model libraries, which are used for annotation of query sequences with protein families and domains, has been expanded to include the libraries from CATH-Gene3D, PIRSF, Superfamily and TIGRFAMs. Finally, we discuss the relocation of the HMMER webserver to the European Bioinformatics Institute and the potential impact that this will have.
                Bookmark

                Author and article information

                Journal
                Nature Microbiology
                Nat Microbiol
                Springer Science and Business Media LLC
                2058-5276
                January 2017
                October 10 2016
                January 2017
                : 2
                : 1
                Article
                10.1038/nmicrobiol.2016.180
                27723761
                932eb339-4505-49c7-b29d-20c782ef3f34
                © 2017

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article