73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Peroxisome Proliferator-Activated Receptor α–Independent Actions of Fenofibrate Exacerbates Left Ventricular Dilation and Fibrosis in Chronic Pressure Overload

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Progressive cardiac remodeling is characterized by subsequent chamber hypertrophy, enlargement, and pump dysfunction. It is also associated with increased cardiac fibrosis and matrix turnover. Interestingly, peroxisome proliferator-activated receptor (PPAR) alpha activators reduce cardiac hypertrophy, inflammation, and fibrosis. Little is known about the role of fenofibrates in mediating PPARalpha-independent effects in response to chronic pressure overload (PO). Wild-type and PPARalpha-deficient mice were subjected to chronic PO caused by ascending aortic constriction to test the role of fenofibrates in chronic, progressive cardiac remodeling by a PPARalpha-independent mechanism. Mice were randomized to regular chow or chow-containing fenofibrate (100 mg/kg of body weight per day) for 1 week before and 8 weeks after ascending aortic constriction. In the presence of PPARalpha, wild-type chronic PO mice, treated with fenofibrate, had improved cardiac remodeling. However, PO PPARalpha-deficient mice treated with fenofibrate had increased mortality, significantly adverse left ventricular end diastolic (3.4+/-0.1 versus 4.2+/-0.1 mm) and end systolic (1.5+/-0.2 versus 2.5+/-0.2 mm) dimensions, and fractional shortening (57+/-3% versus 40+/-3%). Fenofibrate also increased myocardial hypertrophy, cardiac fibrosis, and the ratio of matrix metalloproteinase-2/tissue inhibitor of matrix metalloproteinase-2 in PO PPARalpha-deficient mice. Fenofibrate inhibited matrix metalloproteinase activity in vitro and aldosterone-induced increases in extracellular signal-regulated kinase phosphorylation. Thus, fenofibrate improved cardiac remodeling in chronic PO mice. However, in PPARalpha-deficient mice, this chronic PO was exacerbated and associated with increased myocardial fibrosis and altered matrix remodeling. In the absence of PPARalpha, fenofibrates exerts deleterious, pleiotropic myocardial actions. This is an important observation, because PPARalpha agonists are considered possible inhibitory regulators of cardiac remodeling in the remodeled heart.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators.

          To gain insight into the function of peroxisome proliferator-activated receptor (PPAR) isoforms in rodents, we disrupted the ligand-binding domain of the alpha isoform of mouse PPAR (mPPAR alpha) by homologous recombination. Mice homozygous for the mutation lack expression of mPPAR alpha protein and yet are viable and fertile and exhibit no detectable gross phenotypic defects. Remarkably, these animals do not display the peroxisome proliferator pleiotropic response when challenged with the classical peroxisome proliferators, clofibrate and Wy-14,643. Following exposure to these chemicals, hepatomegaly, peroxisome proliferation, and transcriptional-activation of target genes were not observed. These results clearly demonstrate that mPPAR alpha is the major isoform required for mediating the pleiotropic response resulting from the actions of peroxisome proliferators. mPPAR alpha-deficient animals should prove useful to further investigate the role of this receptor in hepatocarcinogenesis, fatty acid metabolism, and cell cycle regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Peroxisome proliferator-activated receptors in inflammation control.

            Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily. PPARalpha is highly expressed in liver, skeletal muscle, kidney, heart and the vascular wall. PPARgamma is predominantly detected in adipose tissue, intestine and macrophages. PPARs are activated by fatty-acid derivatives and pharmacological agents such as fibrates and glitazones which are specific for PPARalpha and PPARgamma respectively. PPARs regulate lipid and lipoprotein metabolism, glucose homeostasis, cell proliferation and differentiation, and apoptosis. PPARalpha controls intra- and extracellular lipid metabolisms whereas PPARgamma triggers adipocyte differentiation and promotes lipid storage. In addition, PPARs also modulate the inflammatory response. PPAR activators have been shown to exert anti-inflammatory activities in various cell types by inhibiting the expression of proinflammatory genes such as cytokines, metalloproteases and acute-phase proteins. PPARs negatively regulate the transcription of inflammatory response genes by antagonizing the AP-1, nuclear factor-kappaB (NF-kappaB), signal transducer and activator of transcription and nuclear factor of activated T-cells signalling pathways and by stimulating the catabolism of proinflammatory eicosanoids. These recent findings indicate a modulatory role for PPARs in inflammation with potential therapeutical applications in chronic inflammatory diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth.

              We sought to delineate the molecular regulatory events involved in the energy substrate preference switch from fatty acids to glucose during cardiac hypertrophic growth. alpha(1)-adrenergic agonist-induced hypertrophy of cardiac myocytes in culture resulted in a significant decrease in palmitate oxidation rates and a reduction in the expression of the gene encoding muscle carnitine palmitoyltransferase I (M-CPT I), an enzyme involved in mitochondrial fatty acid uptake. Cardiac myocyte transfection studies demonstrated that M-CPT I promoter activity is repressed during cardiac myocyte hypertrophic growth, an effect that mapped to a peroxisome proliferator-activated receptor-alpha (PPARalpha) response element. Ventricular pressure overload studies in mice, together with PPARalpha overexpression studies in cardiac myocytes, demonstrated that, during hypertrophic growth, cardiac PPARalpha gene expression falls and its activity is altered at the posttranscriptional level via the extracellular signal-regulated kinase mitogen-activated protein kinase pathway. Hypertrophied myocytes exhibited reduced capacity for cellular lipid homeostasis, as evidenced by intracellular fat accumulation in response to oleate loading. These results indicate that during cardiac hypertrophic growth, PPARalpha is deactivated at several levels, leading to diminished capacity for myocardial lipid and energy homeostasis.
                Bookmark

                Author and article information

                Journal
                Hypertension
                Hypertension
                Ovid Technologies (Wolters Kluwer Health)
                0194-911X
                1524-4563
                May 2007
                May 2007
                : 49
                : 5
                : 1084-1094
                Affiliations
                [1 ]From the Whitaker Cardiovascular Institute (T-A.S.D., L.C., M.K.R., S.N., D.S.D.S., D.A.S., R.L., F.S.) and Muscle and Aging Research Unit (N.K.L.), Boston University School of Medicine, Mass.
                Article
                10.1161/HYPERTENSIONAHA.107.086926
                17353509
                932f3850-a998-445e-9c17-8987dbff8b17
                © 2007
                History

                Comments

                Comment on this article