48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resource Allocation Optimization for Delay-Sensitive Traffic in Fronthaul Constrained Cloud Radio Access Networks

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cloud radio access network (C-RAN) provides high spectral and energy efficiency performances, low expenditures and intelligent centralized system structures to operators, which has attracted intense interests in both academia and industry. In this paper, a hybrid coordinated multi-point transmission (H-CoMP) scheme is designed for the downlink transmission in C-RANs, which fulfills the flexible tradeoff between cooperation gain and fronthaul consumption. The queue-aware power and rate allocation with constraints of average fronthaul consumption for the delay-sensitive traffic are formulated as an infinite horizon constrained partially observed Markov decision process (POMDP), which takes both the urgent queue state information (QSI) and the imperfect channel state information at transmitters (CSIT) into account. To deal with the curse of dimensionality involved with the equivalent Bellman equation, the linear approximation of post-decision value functions is utilized. A stochastic gradient algorithm is presented to allocate the queue-aware power and transmission rate with H-CoMP, which is robust against unpredicted traffic arrivals and uncertainties caused by the imperfect CSIT. Furthermore, to substantially reduce the computing complexity, an online learning algorithm is proposed to estimate the per-queue post-decision value functions and update the Lagrange multipliers. The simulation results demonstrate performance gains of the proposed stochastic gradient algorithms, and confirm the asymptotical convergence of the proposed online learning algorithm.

          Related collections

          Author and article information

          Journal
          28 October 2014
          Article
          1410.7867
          93304c0b-94f3-42f4-9645-194e692a9b6a

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          12 pages, 6 figures
          cs.IT math.IT

          Comments

          Comment on this article