1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Soft suspensions: inertia cooperates with flexibility

      Journal of Fluid Mechanics
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: not found
          • Article: not found

          Radial Particle Displacements in Poiseuille Flow of Suspensions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strain energy function of red blood cell membranes.

            The several widely different values of the elastic modulus of the human red blood cell membrane which have been reported in the literature are incorporated into a single strain energy function consisting of two terms. One term gives the small stresses and low elastic modulus which is observed when the red cell membrane is deformed at constant area. The second term contributes a large isotropic stress dependent on the change of area. The strain energy function is applied to the process of sphering of red blood cells in a hypotonic solution. It is shown that a nearly perfect sphere can result even though the red blood cell membrane is homogeneous in all areas of the cell. Results pertinent to sieving and micropipette experiments are also explored.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deformability-based cell classification and enrichment using inertial microfluidics.

              The ability to detect and isolate rare target cells from heterogeneous samples is in high demand in cell biology research, immunology, tissue engineering and medicine. Techniques allowing label-free cell enrichment or detection are especially important to reduce the complexity and costs towards clinical applications. Single-cell deformability has recently been recognized as a unique label-free biomarker for cell phenotype with implications for assessment of cancer invasiveness. Using a unique combination of fluid dynamic effects in a microfluidic system, we demonstrate high-throughput continuous label-free cell classification and enrichment based on cell size and deformability. The system takes advantage of a balance between deformability-induced and inertial lift forces as cells travel in a microchannel flow. Particles and droplets with varied elasticity and viscosity were found to have separate lateral dynamic equilibrium positions due to this balance of forces. We applied this system to successfully classify various cell types using cell size and deformability as distinguishing markers. Furthermore, using differences in dynamic equilibrium positions, we adapted the system to conduct passive, label-free and continuous cell enrichment based on these markers, enabling off-chip sample collection without significant gene expression changes. The presented method has practical potential for high-throughput deformability measurements and cost-effective cell separation to obtain viable target cells of interest in cancer research, immunology, and regenerative medicine.
                Bookmark

                Author and article information

                Journal
                applab
                Journal of Fluid Mechanics
                J. Fluid Mech.
                Cambridge University Press (CUP)
                0022-1120
                1469-7645
                December 10 2014
                October 30 2014
                December 2014
                : 760
                : 1-4
                Article
                10.1017/jfm.2014.443
                93400fb9-1b36-4b5e-8c93-5fdf365937d9
                © 2014
                History

                Comments

                Comment on this article