4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities

      , , , ,
      Applied and Environmental Microbiology
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The nasal carriage rate of Staphylococcus aureusin human is 25 to 30%, and S. aureussporadically causes severe infections. However, the mechanisms underlying staphylococcal carriage remain largely unknown. In the present study, we constructed an rpoB-based microbiome method for staphylococcal species discrimination. Based on a microbiome scheme targeting viable cell DNA using propidium monoazide (PMA) dye (PMA microbiome method), we also developed a new method to allow the comprehensive viability analysis of any bacterial taxon. To clarify the ecological distribution of staphylococci in the nasal microbiota, we applied these methods in 46 nasal specimens from healthy adults. PMA microbiome results showed that Staphylococcaceaeand Corynebacteriaceaewere the most predominant viable taxa (average relative abundance: 0.435262 and 0.375195, respectively), and Staphylococcus epidermidisexhibited the highest viability in the nasal microbiota. Staphylococcus aureusdetection rates from nasal specimens by rpoB-based conventional and PMA microbiome methods were 84.8% (39 of 46) and 69.5% (32 of 46), respectively, which substantially exceeded the values obtained by a culture method using identical specimens (36.9%). Our results suggest that Staphylococcaceaespecies, especially S. epidermidis, adapted most successfully to human nasal cavity. High detection of S. aureusDNA by microbiome methods suggests that almost all healthy adults are consistently exposed to S. aureusin everyday life. Furthermore, the large difference in S. aureusdetection rates between culture and microbiome methods suggests that S. aureuscells frequently exist in a viable but nonculturable state in nasal cavities. Our method and findings will contribute to a better understanding of the mechanisms underlying carriage of indigenous bacteria.

          IMPORTANCEMetagenomic analyses, such as 16S rRNA microbiome methods, have provided new insights in various research fields. However, conventional 16S rRNA microbiome methods do not permit taxonomic analysis of only the viable bacteria in a sample and have poor resolving power below the genus level. Our new schemes allowed for viable cell-specific analysis and species discrimination, and nasal microbiome data using these methods provided some interesting findings regarding staphylococcal nasal carriage. According to our comprehensive viability analysis, the high viability of Staphylococcusspecies, especially Staphylococcus epidermidis, in human nasal carriage suggests that this taxon has adapted most successfully to human nasal tissue. Also, a higher detection rate of S. aureusDNA by microbiome methods (84.8%) than by a culture method (36.9%) suggests that almost all healthy adults are consistently exposed to Staphylococcus aureusin the medium and long term. Our findings will contribute to a better understanding of the mechanisms underlying the carriage of indigenous bacteria.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global burden of group A streptococcal diseases.

            The global burden of disease caused by group A streptococcus (GAS) is not known. We review recent population-based data to estimate the burden of GAS diseases and highlight deficiencies in the available data. We estimate that there are at least 517,000 deaths each year due to severe GAS diseases (eg, acute rheumatic fever, rheumatic heart disease, post-streptococcal glomerulonephritis, and invasive infections). The prevalence of severe GAS disease is at least 18.1 million cases, with 1.78 million new cases each year. The greatest burden is due to rheumatic heart disease, with a prevalence of at least 15.6 million cases, with 282,000 new cases and 233,000 deaths each year. The burden of invasive GAS diseases is unexpectedly high, with at least 663,000 new cases and 163,000 deaths each year. In addition, there are more than 111 million prevalent cases of GAS pyoderma, and over 616 million incident cases per year of GAS pharyngitis. Epidemiological data from developing countries for most diseases is poor. On a global scale, GAS is an important cause of morbidity and mortality. These data emphasise the need to reinforce current control strategies, develop new primary prevention strategies, and collect better data from developing countries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coagulase-negative staphylococci.

              The definition of the heterogeneous group of coagulase-negative staphylococci (CoNS) is still based on diagnostic procedures that fulfill the clinical need to differentiate between Staphylococcus aureus and those staphylococci classified historically as being less or nonpathogenic. Due to patient- and procedure-related changes, CoNS now represent one of the major nosocomial pathogens, with S. epidermidis and S. haemolyticus being the most significant species. They account substantially for foreign body-related infections and infections in preterm newborns. While S. saprophyticus has been associated with acute urethritis, S. lugdunensis has a unique status, in some aspects resembling S. aureus in causing infectious endocarditis. In addition to CoNS found as food-associated saprophytes, many other CoNS species colonize the skin and mucous membranes of humans and animals and are less frequently involved in clinically manifested infections. This blurred gradation in terms of pathogenicity is reflected by species- and strain-specific virulence factors and the development of different host-defending strategies. Clearly, CoNS possess fewer virulence properties than S. aureus, with a respectively different disease spectrum. In this regard, host susceptibility is much more important. Therapeutically, CoNS are challenging due to the large proportion of methicillin-resistant strains and increasing numbers of isolates with less susceptibility to glycopeptides.
                Bookmark

                Author and article information

                Journal
                Applied and Environmental Microbiology
                Appl Environ Microbiol
                American Society for Microbiology
                0099-2240
                1098-5336
                June 01 2018
                May 17 2018
                April 06 2018
                : 84
                : 11
                Article
                10.1128/AEM.00517-18
                5960957
                29625975
                93417052-290f-45aa-a494-43ab8068a8ca
                © 2018
                History

                Comments

                Comment on this article