+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cryptosporidium and Giardia in Africa: current and future challenges

      1 , 2 , , 1

      Parasites & Vectors

      BioMed Central

      Cryptosporidium, Giardia, Africa, Molecular typing, HIV, Malnutrition, Climate change

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Cryptosporidium and Giardia are important causes of diarrhoeal illness. Adequate knowledge of the molecular diversity and geographical distribution of these parasites and the environmental and climatic variables that influence their prevalence is important for effective control of infection in at-risk populations, yet relatively little is known about the epidemiology of these parasites in Africa. Cryptosporidium is associated with moderate to severe diarrhoea and increased mortality in African countries and both parasites negatively affect child growth and development. Malnutrition and HIV status are also important contributors to the prevalence of Cryptosporidium and Giardia in African countries. Molecular typing of both parasites in humans, domestic animals and wildlife to date indicates a complex picture of both anthroponotic, zoonotic and spill-back transmission cycles that requires further investigation. For Cryptosporidium, the only available drug (nitazoxanide) is ineffective in HIV and malnourished individuals and therefore more effective drugs are a high priority. Several classes of drugs with good efficacy exist for Giardia, but dosing regimens are suboptimal and emerging resistance threatens clinical utility. Climate change and population growth are also predicted to increase both malnutrition and the prevalence of these parasites in water sources. Dedicated and co-ordinated commitments from African governments involving “One Health” initiatives with multidisciplinary teams of veterinarians, medical workers, relevant government authorities, and public health specialists working together are essential to control and prevent the burden of disease caused by these parasites.

          Related collections

          Most cited references 300

          • Record: found
          • Abstract: found
          • Article: not found

          Zoonotic potential and molecular epidemiology of Giardia species and giardiasis.

          Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination.
            • Record: found
            • Abstract: found
            • Article: not found

            Zoonotic potential of Giardia.

            Giardia duodenalis (syn. Giardia lamblia and Giardia intestinalis) is a common intestinal parasite of humans and mammals worldwide. Assessing the zoonotic transmission of the infection requires molecular characterization as there is considerable genetic variation within G. duodenalis. To date eight major genetic groups (assemblages) have been identified, two of which (A and B) are found in both humans and animals, whereas the remaining six (C to H) are host-specific and do not infect humans. Sequence-based surveys of single loci have identified a number of genetic variants (genotypes) within assemblages A and B in animal species, some of which may have zoonotic potential. Multi-locus typing data, however, has shown that in most cases, animals do not share identical multi-locus types with humans. Furthermore, interpretation of genotyping data is complicated by the presence of multiple alleles that generate "double peaks" in sequencing files from PCR products, and by the potential exchange of genetic material among isolates, which may account for the non-concordance in the assignment of isolates to specific assemblages. Therefore, a better understanding of the genetics of this parasite is required to allow the design of more sensitive and variable subtyping tools, that in turn may help unravel the complex epidemiology of this infection. Copyright © 2013. Published by Elsevier Ltd.
              • Record: found
              • Abstract: found
              • Article: not found

              Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2004-2010.

              The present update gives a comprehensive review of worldwide waterborne parasitic protozoan outbreaks that occurred and were published globally between January 2004 and December 2010. At least one hundred and ninety-nine outbreaks of human diseases due to the waterborne transmission of parasitic protozoa occurred and were reported during the time period from 2004 to 2010. 46.7% of the documented outbreaks occurred on the Australian continent, 30.6% in North America and 16.5% in Europe. Cryptosporidium spp. was the etiological agent in 60.3% (120) of the outbreaks, Giardia lamblia in 35.2% (70) and other protozoa in 4.5% (9). Four outbreaks (2%) were caused by Toxoplasma gondii, three (1.5%) by Cyclospora cayetanensis. In two outbreaks (1%) Acanthamoeba spp. was identified as the causative agent. In one outbreak, G. lamblia (in 17.6% of stool samples) and Cryptosporidium parvum (in 2.7% of stool samples) as well as Entamoeba histolytica (in 9.4% of stool samples) and Blastocystis hominis (in 8.1% of stool samples) were detected. In those countries that are likely affected most a lack of surveillance systems is noticeable. However, countries that established surveillance systems did not establish an international standardization of reporting systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

                Author and article information

                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                20 April 2017
                20 April 2017
                : 10
                [1 ]ISNI 0000 0004 0436 6763, GRID grid.1025.6, School of Veterinary and Life Sciences, , Murdoch University, ; Perth, Australia
                [2 ]Council for Scientific and Industrial Research, Animal Research Institute, Accra, Ghana
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Custom metadata
                © The Author(s) 2017


                cryptosporidium, giardia, africa, molecular typing, hiv, malnutrition, climate change


                Comment on this article