121
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reactive oxygen species (ROS) form under normal physiological conditions and may have both beneficial and harmful role. We search the literature and current knowledge in the aspect of ROS participation in the pathogenesis of anterior and posterior eye segment diseases in adults. ROS take part in the pathogenesis of keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, stimulating apoptosis of corneal cells. ROS play a role in the pathogenesis of glaucoma stimulating apoptotic and inflammatory pathways on the level of the trabecular meshwork and promoting retinal ganglion cells apoptosis and glial dysfunction in the posterior eye segment. ROS play a role in the pathogenesis of Leber's hereditary optic neuropathy and traumatic optic neuropathy. ROS induce apoptosis of human lens epithelial cells. ROS promote apoptosis of vascular and neuronal cells and stimulate inflammation and pathological angiogenesis in the course of diabetic retinopathy. ROS are associated with the pathophysiological parainflammation and autophagy process in the course of the age-related macular degeneration.

          Related collections

          Most cited references185

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia.

          Autophagy is a process by which cytoplasmic organelles can be catabolized either to remove defective structures or as a means of providing macromolecules for energy generation under conditions of nutrient starvation. In this study we demonstrate that mitochondrial autophagy is induced by hypoxia, that this process requires the hypoxia-dependent factor-1-dependent expression of BNIP3 and the constitutive expression of Beclin-1 and Atg5, and that in cells subjected to prolonged hypoxia, mitochondrial autophagy is an adaptive metabolic response which is necessary to prevent increased levels of reactive oxygen species and cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The sites and topology of mitochondrial superoxide production.

            Mitochondrial superoxide production is an important source of reactive oxygen species in cells, and may cause or contribute to ageing and the diseases of ageing. Seven major sites of superoxide production in mammalian mitochondria are known and widely accepted. In descending order of maximum capacity they are the ubiquinone-binding sites in complex I (site IQ) and complex III (site IIIQo), glycerol 3-phosphate dehydrogenase, the flavin in complex I (site IF), the electron transferring flavoprotein:Q oxidoreductase (ETFQOR) of fatty acid beta-oxidation, and pyruvate and 2-oxoglutarate dehydrogenases. None of these sites is fully characterized and for some we only have sketchy information. The topology of the sites is important because it determines whether or not a site will produce superoxide in the mitochondrial matrix and be able to damage mitochondrial DNA. All sites produce superoxide in the matrix; site IIIQo and glycerol 3-phosphate dehydrogenase also produce superoxide to the intermembrane space. The relative contribution of each site to mitochondrial reactive oxygen species generation in the absence of electron transport inhibitors is unknown in isolated mitochondria, in cells or in vivo, and may vary considerably with species, tissue, substrate, energy demand and oxygen tension. Copyright (c) 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2.

              Macroautophagy is an evolutionary conserved lysosomal pathway involved in the turnover of cellular macromolecules and organelles. In spite of its essential role in tissue homeostasis, the molecular mechanisms regulating mammalian macroautophagy are poorly understood. Here, we demonstrate that a rise in the free cytosolic calcium ([Ca(2+)](c)) is a potent inducer of macroautophagy. Various Ca(2+) mobilizing agents (vitamin D(3) compounds, ionomycin, ATP, and thapsigargin) inhibit the activity of mammalian target of rapamycin, a negative regulator of macroautophagy, and induce massive accumulation of autophagosomes in a Beclin 1- and Atg7-dependent manner. This process is mediated by Ca(2+)/calmodulin-dependent kinase kinase-beta and AMP-activated protein kinase and inhibited by ectopic Bcl-2 located in the endoplasmatic reticulum (ER), where it lowers the [Ca(2+)](ER) and attenuates agonist-induced Ca(2+) fluxes. Thus, an increase in the [Ca(2+)](c) serves as a potent inducer of macroautophagy and as a target for the antiautophagy action of ER-located Bcl-2.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2016
                10 January 2016
                : 2016
                : 3164734
                Affiliations
                1Domestic and Specialized Medicine Centre “Dilmed”, Ulica Bohaterów Monte Cassino 3, 40-231 Katowice, Poland
                2Department of Ophthalmology, Poznan City Hospital, Ulica Szwajcarska 3, 61-285 Poznań, Poland
                3Chair of Ophthalmology, Medical Faculty, University of Warmia and Mazury, Ulica Żołnierska 14 C, 10-719 Olsztyn, Poland
                Author notes
                *Andrzej Grzybowski: ae.grzybowski@ 123456gmail.com

                Academic Editor: Paola Venditti

                Article
                10.1155/2016/3164734
                4736974
                26881021
                934bf05d-445f-4571-b601-de8a0cd0f57e
                Copyright © 2016 M. Nita and A. Grzybowski.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 September 2015
                : 16 November 2015
                : 17 November 2015
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article