109
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients

      research-article
      1 , 2 , 2 , 3 , 1 , 4 , 3 , 3 , 5 , 6 , 7 , 3 , 8 , 2 , 9 , 10 , 2 , 11 , 11 , 9 , 2 , 12 , 13 , 5 , 2 , 4 , 6 , 14 , 1 , 15 , 16 , 3 , 7 , 1 , 10 , 17 , 2 , 6 ,
      Science (New York, N.y.)
      American Association for the Advancement of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronavirus disease 2019 (COVID-19) is characterized by distinct patterns of disease progression suggesting diverse host immune responses. We performed an integrated immune analysis on a cohort of 50 COVID-19 patients with various disease severity. A unique phenotype was observed in severe and critical patients, consisting of a highly impaired interferon (IFN) type I response (characterized by no IFN-β and low IFN-α production and activity), associated with a persistent blood viral load and an exacerbated inflammatory response. Inflammation was partially driven by the transcriptional factor NF-κB and characterized by increased tumor necrosis factor (TNF)-α and interleukin (IL)-6 production and signaling. These data suggest that type-I IFN deficiency in the blood could be a hallmark of severe COVID-19 and provide a rationale for combined therapeutic approaches.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical Characteristics of Coronavirus Disease 2019 in China

            Abstract Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. Methods We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. Results The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. Conclusions During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

              Abstract Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. Methods We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. Results Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). Conclusions On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)
                Bookmark

                Author and article information

                Journal
                Science
                Science
                SCIENCE
                Science (New York, N.y.)
                American Association for the Advancement of Science
                0036-8075
                1095-9203
                13 July 2020
                : eabc6027
                Affiliations
                [1 ]Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Université de Paris, F-75015, Paris.
                [2 ]Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Université de Paris, F-75014, Paris.
                [3 ]Laboratory of Dendritic Cell Immunobiology, Inserm U1223, Department of Immunology, Institut Pasteur, F-75015, Paris.
                [4 ]Sorbonne Université, Faculté de médecine, UMS037, PASS, Plateforme de cytométrie de la Pitié-Salpêtrière CyPS, F-75013, Paris.
                [5 ]Department of Virology, APHP-CUP, Université de Paris, F-75015, Paris.
                [6 ]PARCC, INSERM U970, Paris.
                [7 ]Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, F-75015, Paris.
                [8 ]Department of Automated Diagnostic Biology, APHP-CUP, F-75014, Paris.
                [9 ]Department of Pulmonology, APHP-CUP, Institut Cochin, UMR 1016, Université de Paris, F-75014, Paris.
                [10 ]Equipe Mobile d’Infectiologie, APHP-CUP, Université de Paris, F-75014, Paris.
                [11 ]Medical intensive care unit, APHP-CUP, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris, F-75014, Paris.
                [12 ]Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris.
                [13 ]Centre Régional de Pharmacovigilance, APHP-CUP, Université de Paris, F-75014, Paris.
                [14 ]Department of Virology, APHP-CUP, Université de Paris, F-75014, Paris.
                [15 ]Unité d’immunologie hématologie et rhumatologie pédiatriques, APHP-CUP, Université de Paris, F-75015, Paris.
                [16 ]Collège de France, Paris.
                [17 ]Epidémiologie et modélisation de la résistance aux antimicrobiens, Institut Pasteur, F-75015, Paris, France.
                Author notes
                [*]

                These authors contributed equally to this work.

                [†]

                These authors contributed equally to this work.

                []Corresponding author. E-mail: benjamin.terrier@ 123456aphp.fr
                Author information
                https://orcid.org/0000-0002-2520-3272
                https://orcid.org/0000-0001-5326-1624
                https://orcid.org/0000-0002-2249-377X
                https://orcid.org/0000-0002-0202-612X
                https://orcid.org/0000-0002-5478-482X
                https://orcid.org/0000-0002-6534-0984
                https://orcid.org/0000-0003-0475-1218
                https://orcid.org/0000-0002-6828-608X
                https://orcid.org/0000-0003-3639-3849
                https://orcid.org/0000-0002-3162-5033
                https://orcid.org/0000-0002-1124-9245
                https://orcid.org/0000-0002-6823-4474
                https://orcid.org/0000-0002-7021-9492
                https://orcid.org/0000-0002-6062-5905
                https://orcid.org/0000-0002-8875-2308
                https://orcid.org/0000-0001-7858-7866
                https://orcid.org/0000-0001-8064-7987
                Article
                abc6027
                10.1126/science.abc6027
                7402632
                32661059
                934fa7f8-de53-407b-b136-e692e65fff31
                Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

                This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

                History
                : 03 May 2020
                : 07 July 2020
                Funding
                Funded by: doi http://dx.doi.org/10.13039/501100001665, Agence Nationale de la Recherche;
                Award ID: ANR-10-IAHU-01
                Funded by: doi http://dx.doi.org/10.13039/501100001665, Agence Nationale de la Recherche;
                Award ID: ANR-10-LABX-69-01
                Funded by: Fonds Immunov;
                Funded by: Institut Imagine;
                Categories
                Report
                Reports
                Reports
                Immunology
                Microbio
                Custom metadata
                4
                4

                Uncategorized
                Uncategorized

                Comments

                Comment on this article