+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-19-3p Targets PTEN to Regulate Cervical Cancer Cell Proliferation, Invasion, and Autophagy

      1 , , 2 , 1
      Genetics Research

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Cervical cancer is the second most common cancer among women worldwide. Extensive studies have shown that microRNAs (miRNA/miR) can regulate the formation, progression, and metastasis of cancer. The purpose of this study was to investigate the effect of miR-19-3p on the proliferation, invasion, and autophagy of cervical cancer cells and to explore the underlying mechanism.


          SiHa and HeLa cells were transfected with miR-19-3p mimic and inhibitor. miR-19-3p and PTEN expression were detected using real-time quantitative PCR and western blot, respectively. The binding between miR-19-3p and PTEN was predicted using Targetscan7.2 and verified by a dual-luciferase reporter gene assay. The effects of miR-19-3p on cell invasion and proliferation were evaluated by Transwell assays and MTT, respectively. The effect of miR-19-3p on autophagy was observed using fluorescence microscopy.


          The expression of miR-19-3p in cervical cancer tissues and SiHa and HeLa cells was significantly upregulated, whereas the expression of PTEN was significantly downregulated. PTEN was one of the direct targets of miR-19-3p. The miR-19-3p mimic significantly reduced the apoptosis rate and autophagy and promoted cell proliferation and invasion of the SiHa and HeLa cells.


          In summary, miR-19b-3p can target PTEN to regulate the proliferation, invasion, and autophagy of cervical cancer cells. Our findings indicate the potential of miR-19-3p as a target for cervical cancer treatment in the future.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            • Record: found
            • Abstract: found
            • Article: not found

            Human papillomavirus is a necessary cause of invasive cervical cancer worldwide.

            A recent report that 93 per cent of invasive cervical cancers worldwide contain human papillomavirus (HPV) may be an underestimate, due to sample inadequacy or integration events affecting the HPV L1 gene, which is the target of the polymerase chain reaction (PCR)-based test which was used. The formerly HPV-negative cases from this study have therefore been reanalyzed for HPV serum antibodies and HPV DNA. Serology for HPV 16 VLPs, E6, and E7 antibodies was performed on 49 of the 66 cases which were HPV-negative and a sample of 48 of the 866 cases which were HPV-positive in the original study. Moreover, 55 of the 66 formerly HPV-negative biopsies were also reanalyzed by a sandwich procedure in which the outer sections in a series of sections are used for histological review, while the inner sections are assayed by three different HPV PCR assays targeting different open reading frames (ORFs). No significant difference was found in serology for HPV 16 proteins between the cases that were originally HPV PCR-negative and -positive. Type-specific E7 PCR for 14 high-risk HPV types detected HPV DNA in 38 (69 per cent) of the 55 originally HPV-negative and amplifiable specimens. The HPV types detected were 16, 18, 31, 33, 39, 45, 52, and 58. Two (4 per cent) additional cases were only HPV DNA-positive by E1 and/or L1 consensus PCR. Histological analysis of the 55 specimens revealed that 21 were qualitatively inadequate. Only two of the 34 adequate samples were HPV-negative on all PCR tests, as against 13 of the 21 that were inadequate ( p< 0.001). Combining the data from this and the previous study and excluding inadequate specimens, the worldwide HPV prevalence in cervical carcinomas is 99.7 per cent. The presence of HPV in virtually all cervical cancers implies the highest worldwide attributable fraction so far reported for a specific cause of any major human cancer. The extreme rarity of HPV-negative cancers reinforces the rationale for HPV testing in addition to, or even instead of, cervical cytology in routine cervical screening. Copyright 1999 John Wiley & Sons, Ltd.
              • Record: found
              • Abstract: found
              • Article: not found

              miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation.

              Lung and liver cancers are among the most deadly types of cancer. Despite improvements in treatment over the past few decades, patient survival remains poor, underlining the need for development of targeted therapies. MicroRNAs represent a class of small RNAs frequently deregulated in human malignancies. We now report that miR-221&222 are overexpressed in aggressive non-small cell lung cancer and hepatocarcinoma cells, as compared with less invasive and/or normal lung and liver cells. We show that miR-221&222, by targeting PTEN and TIMP3 tumor suppressors, induce TRAIL resistance and enhance cellular migration through the activation of the AKT pathway and metallopeptidases. Finally, we demonstrate that the MET oncogene is involved in miR-221&222 activation through the c-Jun transcription factor.

                Author and article information

                Genet Res (Camb)
                Genet Res (Camb)
                Genetics Research
                3 March 2023
                : 2023
                : 4784500
                1Medical Laboratory, Fuyang City People's Hospital, Fuyang 236004, Anhui, China
                2College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
                Author notes

                Academic Editor: John Charles Rotondo

                Author information
                Copyright © 2023 Wei Wang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 13 August 2022
                : 9 November 2022
                : 22 February 2023
                Research Article



                Comment on this article