23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H- 1H NMR experiments to overcome many of these limitations. Using 1H- 1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ 1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H- 1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ 1-40 oligomer 5–15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Structural conversion of neurotoxic amyloid-β(1–42) oligomers to fibrils

          The Aβ42 peptide rapidly aggregates to form oligomers, protofibils and fibrils en route to the deposition of amyloid plaques associated with Alzheimer's disease. We show that low temperature and low salt can stabilize disc-shaped oligomers (pentamers) that are significantly more toxic to murine cortical neurons than protofibrils and fibrils. We find that these neurotoxic oligomers do not have the β-sheet structure characteristic of fibrils. Rather, the oligomers are composed of loosely aggregated strands whose C-terminus is protected from solvent exchange and which have a turn conformation placing Phe19 in contact with Leu34. On the basis of NMR spectroscopy, we show that the structural conversion of Aβ42 oligomers to fibrils involves the association of these loosely aggregated strands into β-sheets whose individual β-strands polymerize in a parallel, in-register orientation and are staggered at an inter-monomer contact between Gln15 and Gly37.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            2015 Alzheimer's disease facts and figures.

            (2015)
            This report discusses the public health impact of Alzheimer’s disease (AD), including incidence and prevalence, mortality rates, costs of care and the overall effect on caregivers and society. It also examines the challenges encountered by health care providers when disclosing an AD diagnosis to patients and caregivers. An estimated 5.3 million Americans have AD; 5.1 million are age 65 years, and approximately 200,000 are age <65 years and have younger onset AD. By mid-century, the number of people living with AD in the United States is projected to grow by nearly 10 million, fueled in large part by the aging baby boom generation. Today, someone in the country develops AD every 67 seconds. By 2050, one new case of AD is expected to develop every 33 seconds, resulting in nearly 1 million new cases per year, and the estimated prevalence is expected to range from 11 million to 16 million. In 2013, official death certificates recorded 84,767 deaths from AD, making AD the sixth leading cause of death in the United States and the fifth leading cause of death in Americans age 65 years. Between 2000 and 2013, deaths resulting from heart disease, stroke and prostate cancer decreased 14%, 23% and 11%, respectively, whereas deaths from AD increased 71%. The actual number of deaths to which AD contributes (or deaths with AD) is likely much larger than the number of deaths from AD recorded on death certificates. In 2015, an estimated 700,000 Americans age 65 years will die with AD, and many of them will die from complications caused by AD. In 2014, more than 15 million family members and other unpaid caregivers provided an estimated 17.9 billion hours of care to people with AD and other dementias, a contribution valued at more than $217 billion. Average per-person Medicare payments for services to beneficiaries age 65 years with AD and other dementias are more than two and a half times as great as payments for all beneficiaries without these conditions, and Medicaid payments are 19 times as great. Total payments in 2015 for health care, long-term care and hospice services for people age 65 years with dementia are expected to be $226 billion. Among people with a diagnosis of AD or another dementia, fewer than half report having been told of the diagnosis by their health care provider. Though the benefits of a prompt, clear and accurate disclosure of an AD diagnosis are recognized by the medical profession, improvements to the disclosure process are needed. These improvements may require stronger support systems for health care providers and their patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nucleated conformational conversion and the replication of conformational information by a prion determinant.

              Prion proteins can serve as genetic elements by adopting distinct physical and functional states that are self-perpetuating and heritable. The critical region of one prion protein, Sup35, is initially unstructured in solution and then forms self-seeded amyloid fibers. We examined in vitro the mechanism by which this state is attained and replicated. Structurally fluid oligomeric complexes appear to be crucial intermediates in de novo amyloid nucleus formation. Rapid assembly ensues when these complexes conformationally convert upon association with nuclei. This model for replicating protein-based genetic information, nucleated conformational conversion, may be applicable to other protein assembly processes.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                03 July 2015
                2015
                : 5
                : 11811
                Affiliations
                [1 ]Biophysics, University of Michigan-Ann Arbor , Ann Arbor, Michigan 48109, U.S.A
                [2 ]Department of Chemistry, University of Michigan-Ann Arbor , Ann Arbor, Michigan 48109, U.S.A
                [3 ]Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan-Ann Arbor , Ann Arbor, Michigan 48109, U.S.A
                [4 ]Bruker BioSpin Ltd., Bruker Corporation , 555 E Steeles Ave, Milton, ON, Canada
                Author notes
                Article
                srep11811
                10.1038/srep11811
                4490348
                26138908
                9355dfb6-f49a-4a54-b3bc-5d3f515cc655
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 17 February 2015
                : 21 May 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article