5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Alkaptonuria

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references187

          • Record: found
          • Abstract: found
          • Article: not found

          Natural history of alkaptonuria.

          Alkaptonuria, caused by mutations in the HGO gene and a deficiency of homogentisate 1,2-dioxygenase, results in an accumulation of homogentisic acid (HGA), ochronosis, and destruction of connective tissue. There is no effective therapy for this disorder, although nitisinone inhibits the enzyme that produces HGA. We performed a study to delineate the natural history of alkaptonuria. We evaluated 58 patients with alkaptonuria (age range, 4 to 80 years), using clinical, radiographic, biochemical, and molecular methods. A radiographic scoring system was devised to assess the severity of spinal and joint damage. Two patients were treated with nitisinone for 10 and 9 days, respectively. Life-table analyses showed that joint replacement was performed at a mean age of 55 years and that renal stones developed at 64 years, cardiac-valve involvement at 54 years, and coronary-artery calcification at 59 years. Linear regression analysis indicated that the radiographic score for the severity of disease began increasing after the age of 30 years, with a more rapid increase in men than in women. Twenty-three new HGO mutations were identified. In a 51-year-old woman, urinary HGA excretion fell from 2.9 to 0.13 g per day after a 10-day course of nitisinone (7 days at a dose of 0.7 mg per day and 3 days at 2.8 mg per day). In a 59-year-old woman, urinary HGA fell from 6.4 g to 1.7 g per day after nine days of treatment with nitisinone (0.7 mg per day). Plasma tyrosine levels in these patients rose from approximately 1.1 mg per deciliter (60 micromol per liter) in both to approximately 12.8 mg per deciliter (700 micromol per liter) and 23.6 mg per deciliter (1300 micromol per liter), respectively, with no clinical signs or symptoms. The reported data on the natural history of alkaptonuria provide a basis for the evaluation of long-term therapies. Although nitisinone can reduce HGA production in humans with homogentisate 1,2-dioxygenase deficiency, the long-term safety and efficacy of this treatment require further evaluation. Copyright 2002 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            THE INCIDENCE OF ALKAPTONURIA : A STUDY IN CHEMICAL INDIVIDUALITY.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenylalanine hydroxylase deficiency.

              Phenylalanine hydroxylase deficiency is an autosomal recessive disorder that results in intolerance to the dietary intake of the essential amino acid phenylalanine. It occurs in approximately 1:15,000 individuals. Deficiency of this enzyme produces a spectrum of disorders including classic phenylketonuria, mild phenylketonuria, and mild hyperphenylalaninemia. Classic phenylketonuria is caused by a complete or near-complete deficiency of phenylalanine hydroxylase activity and without dietary restriction of phenylalanine most children will develop profound and irreversible intellectual disability. Mild phenylketonuria and mild hyperphenylalaninemia are associated with lower risk of impaired cognitive development in the absence of treatment. Phenylalanine hydroxylase deficiency can be diagnosed by newborn screening based on detection of the presence of hyperphenylalaninemia using the Guthrie microbial inhibition assay or other assays on a blood spot obtained from a heel prick. Since the introduction of newborn screening, the major neurologic consequences of hyperphenylalaninemia have been largely eradicated. Affected individuals can lead normal lives. However, recent data suggest that homeostasis is not fully restored with current therapy. Treated individuals have a higher incidence of neuropsychological problems. The mainstay of treatment for hyperphenylalaninemia involves a low-protein diet and use of a phenylalanine-free medical formula. This treatment must commence as soon as possible after birth and should continue for life. Regular monitoring of plasma phenylalanine and tyrosine concentrations is necessary. Targets of plasma phenylalanine of 120-360 μmol/L (2-6 mg/dL) in the first decade of life are essential for optimal outcome. Phenylalanine targets in adolescence and adulthood are less clear. A significant proportion of patients with phenylketonuria may benefit from adjuvant therapy with 6R-tetrahydrobiopterin stereoisomer. Special consideration must be given to adult women with hyperphenylalaninemia because of the teratogenic effects of phenylalanine. Women with phenylalanine hydroxylase deficiency considering pregnancy should follow special guidelines and assure adequate energy intake with the proper proportion of protein, fat, and carbohydrates to minimize risks to the developing fetus. Molecular genetic testing of the phenylalanine hydroxylase gene is available for genetic counseling purposes to determine carrier status of at-risk relatives and for prenatal testing.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Reviews Disease Primers
                Nat Rev Dis Primers
                Springer Science and Business Media LLC
                2056-676X
                December 2024
                March 07 2024
                : 10
                : 1
                Article
                10.1038/s41572-024-00498-x
                38453957
                9367aa00-5548-4e55-b017-4931d852086c
                © 2024

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article