+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Control of Visceral Leishmaniasis in Latin America—A Systematic Review

      1 , * , 2

      PLoS Neglected Tropical Diseases

      Public Library of Science

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          While three countries in South Asia decided to eliminate anthroponotic visceral leishmaniasis (VL) by 2015, its control in other regions seems fraught with difficulties. Is there a scope for more effective VL control in the Americas where transmission is zoonotic? We reviewed the evidence on VL control strategies in Latin America—diagnosis, treatment, veterinary interventions, vector control—with respect to entomological and clinical outcomes.

          Methodology/Principal Findings

          We searched the electronic databases of MEDLINE, LILACS, and the Cochrane Central Register of Controlled Trials, from 1960 to November 2008 and references of selected articles. Intervention trials as well as observational studies that evaluated control strategies of VL in the Americas were included. While the use of rapid diagnostic tests for VL diagnosis seems well established, there is a striking lack of evidence from clinical trials for drug therapy and few well designed intervention studies for control of vectors or canine reservoirs.


          Elimination of zoonotic VL in the Americas does not seem a realistic goal at this point given the lack of political commitment, gaps in scientific knowledge, and the weakness of case management and surveillance systems. Research priorities and current strategies should be reviewed with the aim of achieving better VL control.

          Author Summary

          Visceral leishmaniasis is a vector-borne disease characterized by fever, spleen and liver enlargement, and low blood cell counts. In the Americas VL is zoonotic, with domestic dogs as main animal reservoirs, and is caused by the intracellular parasite Leishmania infantum (syn. Leishmania chagasi). Humans acquire the infection through the bite of an infected sand fly. The disease is potentially lethal if untreated. VL is reported from Mexico to Argentina, with recent trends showing a rapid spread in Brazil. Control measures directed against the canine reservoir and insect vectors have been unsuccessful, and early detection and treatment of human cases remains as the most important strategy to reduce case fatality. Well-designed studies evaluating diagnosis, treatment, and prevention/control interventions are scarce. The available scientific evidence reasonably supports the use of rapid diagnostic tests for the diagnosis of human disease. Properly designed randomized controlled trials following good clinical practices are needed to inform drug policy. Routine control strategies against the canine reservoirs and insect vectors are based on weak and conflicting evidence, and vector control strategies and vaccine development should constitute research priorities.

          Related collections

          Most cited references 122

          • Record: found
          • Abstract: found
          • Article: not found

          Visceral leishmaniasis: what are the needs for diagnosis, treatment and control?

          Visceral leishmaniasis (VL) is a systemic protozoan disease that is transmitted by phlebotomine sandflies. Poor and neglected populations in East Africa and the Indian sub-continent are particularly affected. Early and accurate diagnosis and treatment remain key components of VL control. In addition to improved diagnostic tests, accurate and simple tests are needed to identify treatment failures. Miltefosine, paromomycin and liposomal amphotericin B are gradually replacing pentavalent antimonials and conventional amphotericin B as the preferred treatments in some regions, but in other areas these drugs are still being evaluated in both mono- and combination therapies. New diagnostic tools and new treatment strategies will only have an impact if they are made widely available to patients.
            • Record: found
            • Abstract: found
            • Article: not found

            Complexities of Assessing the Disease Burden Attributable to Leishmaniasis

            Among parasitic diseases, morbidity and mortality caused by leishmaniasis are surpassed only by malaria and lymphatic filariasis. However, estimation of the leishmaniasis disease burden is challenging, due to clinical and epidemiological diversity, marked geographic clustering, and lack of reliable data on incidence, duration, and impact of the various disease syndromes. Non-health effects such as impoverishment, disfigurement, and stigma add to the burden, and introduce further complexities. Leishmaniasis occurs globally, but has disproportionate impact in the Horn of Africa, South Asia and Brazil (for visceral leishmaniasis), and Latin America, Central Asia, and southwestern Asia (for cutaneous leishmaniasis). Disease characteristics and challenges for control are reviewed for each of these foci. We recommend review of reliable secondary data sources and collection of baseline active survey data to improve current disease burden estimates, plus the improvement or establishment of effective surveillance systems to monitor the impact of control efforts.
              • Record: found
              • Abstract: found
              • Article: not found

              Infectiousness in a cohort of brazilian dogs: why culling fails to control visceral leishmaniasis in areas of high transmission.

              The elimination of seropositive dogs in Brazil has been used to control zoonotic visceral leishmaniasis but with little success. To elucidate the reasons for this, the infectiousness of 50 sentinel dogs exposed to natural Leishmania chagasi infection was assessed through time by xenodiagnosis with the sandfly vector, Lutzomyia longipalpis. Eighteen (43%) of 42 infected dogs became infectious after a median of 333 days in the field (105 days after seroconversion). Seven highly infectious dogs (17%) accounted for >80% of sandfly infections. There were positive correlations between infectiousness and anti-Leishmania immunoglobulin G, parasite detection by polymerase chain reaction, and clinical disease (logistic regression, r2=0.08-0.18). The sensitivity of enzyme-linked immunosorbent assay to detect currently infectious dogs was high (96%) but lower in the latent period (<63%), and specificity was low (24%). Mathematical modeling suggests that culling programs fail because of high incidence of infection and infectiousness, the insensitivity of the diagnostic test to detect infectious dogs, and time delays between diagnosis and culling.

                Author and article information

                Role: Editor
                PLoS Negl Trop Dis
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                January 2010
                19 January 2010
                : 4
                : 1
                [1 ]Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
                [2 ]Epidemiology and Disease Control Unit, Institute of Tropical Medicine, Antwerp, Belgium
                Institut Pasteur de Tunis, Tunisia
                Author notes

                Conceived and designed the experiments: GASR MB. Performed the experiments: GASR MB. Analyzed the data: GASR MB. Contributed reagents/materials/analysis tools: GASR MB. Wrote the paper: GASR MB.

                Romero, Boelaert. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 17
                Research Article
                Infectious Diseases/Epidemiology and Control of Infectious Diseases
                Infectious Diseases/Neglected Tropical Diseases
                Infectious Diseases/Protozoal Infections

                Infectious disease & Microbiology


                Comment on this article