84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Metabolic Signature of Macrophage Responses

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophages are a heterogeneous population of immune cells playing several and diverse functions in homeostatic and immune responses. The broad spectrum of macrophage functions depends on both heterogeneity and plasticity of these cells, which are highly specialized in sensing the microenvironment and modify their properties accordingly. Although it is clear that macrophage phenotypes are difficult to categorize and should be seen as plastic and adaptable, they can be simplified into two extremes: a pro-inflammatory (M1) and an anti-inflammatory/pro-resolving (M2) profile. Based on this definition, M1 macrophages are able to start and sustain inflammatory responses, secreting pro-inflammatory cytokines, activating endothelial cells, and inducing the recruitment of other immune cells into the inflamed tissue; on the other hand, M2 macrophages promote the resolution of inflammation, phagocytose apoptotic cells, drive collagen deposition, coordinate tissue integrity, and release anti-inflammatory mediators. Dramatic switches in cell metabolism accompany these phenotypic and functional changes of macrophages. In particular, M1 macrophages rely mainly on glycolysis and present two breaks on the TCA cycle that result in accumulation of itaconate (a microbicide compound) and succinate. Excess of succinate leads to Hypoxia Inducible Factor 1α (HIF1α) stabilization that, in turn, activates the transcription of glycolytic genes, thus sustaining the glycolytic metabolism of M1 macrophages. On the contrary, M2 cells are more dependent on oxidative phosphorylation (OXPHOS), their TCA cycle is intact and provides the substrates for the complexes of the electron transport chain (ETC). Moreover, pro- and anti-inflammatory macrophages are characterized by specific pathways that regulate the metabolism of lipids and amino acids and affect their responses. All these metabolic adaptations are functional to support macrophage activities as well as to sustain their polarization in specific contexts. The aim of this review is to discuss recent findings linking macrophage functions and metabolism.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage plasticity, polarization, and function in health and disease.

          Macrophages are heterogeneous and their phenotype and functions are regulated by the surrounding micro-environment. Macrophages commonly exist in two distinct subsets: 1) Classically activated or M1 macrophages, which are pro-inflammatory and polarized by lipopolysaccharide (LPS) either alone or in association with Th1 cytokines such as IFN-γ, GM-CSF, and produce pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and TNF-α; and 2) Alternatively activated or M2 macrophages, which are anti-inflammatory and immunoregulatory and polarized by Th2 cytokines such as IL-4 and IL-13 and produce anti-inflammatory cytokines such as IL-10 and TGF-β. M1 and M2 macrophages have different functions and transcriptional profiles. They have unique abilities by destroying pathogens or repair the inflammation-associated injury. It is known that M1/M2 macrophage balance polarization governs the fate of an organ in inflammation or injury. When the infection or inflammation is severe enough to affect an organ, macrophages first exhibit the M1 phenotype to release TNF-α, IL-1β, IL-12, and IL-23 against the stimulus. But, if M1 phase continues, it can cause tissue damage. Therefore, M2 macrophages secrete high amounts of IL-10 and TGF-β to suppress the inflammation, contribute to tissue repair, remodeling, vasculogenesis, and retain homeostasis. In this review, we first discuss the basic biology of macrophages including origin, differentiation and activation, tissue distribution, plasticity and polarization, migration, antigen presentation capacity, cytokine and chemokine production, metabolism, and involvement of microRNAs in macrophage polarization and function. Secondly, we discuss the protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti-microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance.

            Obesity and insulin resistance, the cardinal features of metabolic syndrome, are closely associated with a state of low-grade inflammation. In adipose tissue chronic overnutrition leads to macrophage infiltration, resulting in local inflammation that potentiates insulin resistance. For instance, transgenic expression of Mcp1 (also known as chemokine ligand 2, Ccl2) in adipose tissue increases macrophage infiltration, inflammation and insulin resistance. Conversely, disruption of Mcp1 or its receptor Ccr2 impairs migration of macrophages into adipose tissue, thereby lowering adipose tissue inflammation and improving insulin sensitivity. These findings together suggest a correlation between macrophage content in adipose tissue and insulin resistance. However, resident macrophages in tissues display tremendous heterogeneity in their activities and functions, primarily reflecting their local metabolic and immune microenvironment. While Mcp1 directs recruitment of pro-inflammatory classically activated macrophages to sites of tissue damage, resident macrophages, such as those present in the adipose tissue of lean mice, display the alternatively activated phenotype. Despite their higher capacity to repair tissue, the precise role of alternatively activated macrophages in obesity-induced insulin resistance remains unknown. Using mice with macrophage-specific deletion of the peroxisome proliferator activated receptor-gamma (PPARgamma), we show here that PPARgamma is required for maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impairs alternative macrophage activation, and predisposes these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. Furthermore, gene expression profiling revealed that downregulation of oxidative phosphorylation gene expression in skeletal muscle and liver leads to decreased insulin sensitivity in these tissues. Together, our findings suggest that resident alternatively activated macrophages have a beneficial role in regulating nutrient homeostasis and suggest that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

              The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                03 July 2019
                2019
                : 10
                : 1462
                Affiliations
                [1] 1Department of Biomedical Sciences, Istituto di Ricerca Pediatrica, University of Padova, Fondazione Città della Speranza , Padova, Italy
                [2] 2Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
                [3] 3IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council , Bari, Italy
                Author notes

                Edited by: Anna Ohradanova-Repic, Medical University of Vienna, Austria

                Reviewed by: Amir M. Ghaemmaghami, University of Nottingham, United Kingdom; Alexandre M. Carmo, University of Porto, Portugal

                *Correspondence: Antonella Viola antonella.viola@ 123456unipd.it

                This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.01462
                6618143
                31333642
                93751187-f61a-461b-b478-63bcae1f21cf
                Copyright © 2019 Viola, Munari, Sánchez-Rodríguez, Scolaro and Castegna.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 April 2019
                : 10 June 2019
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 181, Pages: 16, Words: 13064
                Categories
                Immunology
                Review

                Immunology
                macrophage,metabolism,inflammation,metabolic rewiring,immune cross-talk
                Immunology
                macrophage, metabolism, inflammation, metabolic rewiring, immune cross-talk

                Comments

                Comment on this article