21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Obesity does not aggravate vitrification injury in mouse embryos: a prospective study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Obesity is associated with poor reproductive outcomes, but few reports have examined thawed embryo transfer in obese women. Many studies have shown that increased lipid accumulation aggravates vitrification injury in porcine and bovine embryos, but oocytes of these species have high lipid contents (63 ng and 161 ng, respectively). Almost nothing is known about lipids in human oocytes except that these cells are anecdotally known to be relatively lipid poor. In this regard, human oocytes are considered to be similar to those of the mouse, which contain approximately 4 ng total lipids/oocyte. To date, no available data show the impact of obesity on vitrification in mouse embryos. The aim of this study was to establish a murine model of maternal diet-induced obesity and to characterize the effect of obesity on vitrification by investigating the survival rate and embryo developmental competence after thawing.

          Methods

          Prospective comparisons were performed between six–eight-cell embryos from obese and normal-weight mice and between fresh and vitrified embryos. Female C57BL/6 mice were fed standard rodent chow (normal-weight group) or a high-fat diet (obese group) for 6 weeks. The mice were mated, zygotes were collected from oviducts and cultured for 3 days, and six–eight-cell embryos were then selected to assess lipid content in fresh embryos and to evaluate differences in apoptosis, survival, and development rates in response to vitrification.

          Results

          In fresh embryos from obese mice, the lipid content (0.044 vs 0.030, P<0.01) and apoptosis rate (15.1% vs.9.3%, P<0.05)were significantly higher, the survival rate (83.1% vs. 93.1%, P<0.01) on day 5 was significantly lower, and embryo development was notably delayed on days 3–5 compared with the normal-weight group. After vitrification, no significant difference was found between thawed embryos from obese and normal-weight mice in apoptosis, survival, and development rates on days 4 and 5. In both groups, pre- and post-vitrification embryo apoptosis, survival, and development rates were similar.

          Conclusions

          This study demonstrated that differences in survival and developmental rates between embryos from obese and normal-weight mice were eliminated after vitrification. Thus, maternal obesity does not aggravate vitrification injury, but obesity alone greatly impairs pre-implantation embryo survival and development.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates.

          In obesity, accumulation of lipid in nonadipose tissues, or lipotoxicity, is associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and ultimately apoptosis. We have previously shown that obese women have increased triglycerides in follicular fluid; thus, the present study examined whether high-fat diet-induced obesity causes lipotoxicity in granulosa cells and the cumulus-oocyte complex (COC). Oocytes of mice fed a high-fat diet had dramatically increased lipid content and reduced mitochondrial membrane potential compared to those of mice fed a control diet. COCs from mice fed a high-fat diet had increased expression of ER stress marker genes ATF4 and GRP78. Apoptosis was increased in granulosa and cumulus cells of mice fed a high-fat diet. Mice fed a high-fat diet also exhibited increased anovulation and decreased in vivo fertilization rates. Thus, lipid accumulation, ER stress, mitochondrial dysfunction, and apoptosis are markedly increased in ovarian cells of mice fed a high-fat diet. ER stress markers were also analyzed in granulosa cells and follicular fluid from women with varying body mass indices (BMI). ATF4 was increased in granulosa cells and [Ca(2+)] in follicular fluid from obese women compared to nonobese women. These results indicate that lipotoxicity may be occurring in ovarian cells of obese women and may contribute to the reduced pregnancy rates observed in response to obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Energy metabolism in pig oocytes and early embryos.

            Pig oocytes and embryos differ from those of other species in having a large quantity of endogenous lipid, a potential role for which has yet to be identified. In the present study, the hypothesis that endogenous triglyceride acts as a metabolic substrate during in vitro maturation and early embryo development was tested. Embryos were produced by in vitro fertilization (IVF) of in vitro-matured, abattoir-derived immature oocytes, cultured in medium NCSU23 up to the blastocyst stage. The triglyceride content of single oocytes and embryos was measured throughout development. Oxygen and glucose consumption and the formation of lactate were measured non-invasively over the same period, enabling total ATP production to be calculated. The triglyceride content of oocytes before maturation (135+/-4.9 ng) decreased by 13 ng (P<0.05) during in vitro maturation, but there was no apparent change in triglyceride content during embryo development (117.68 ng). Oxygen consumption was low throughout embryo cleavage before reaching a peak at the blastocyst stage (P<0.01), a pattern similar to that seen in other mammals studied. Glucose consumption and lactate production were also at a maximum at the blastocyst stage (P<0.05). These data indicate that pig oocytes may use endogenous triglyceride as an energy source during in vitro maturation and that most (91-97%) of the ATP produced during embryo development comes from oxidative phosphorylation. The high exogenous glucose concentration in NCSU23 (5.5 mmol l(-1)) may be needed to form pyruvate, which in turn, produces oxaloacetate, which is required to prime the tricarboxylic acid cycle. However, the reason for the high lipid content in early pig embryos remains to be elucidated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality.

              Obesity and its physiological consequences are increasingly prevalent among women of reproductive age and are associated with infertility. To investigate, female mice were fed a high-fat diet until the onset of insulin resistance, followed by assessments of ovarian gene expression, ovulation, fertilization, and oocyte developmental competence. We report defects to ovarian function associated with diet-induced obesity (DIO) that result in poor oocyte quality, subsequently reduced blastocyst survival rates, and abnormal embryonic cellular differentiation. To identify critical cellular mediators of ovarian responses to obesity induced insulin resistance, DIO females were treated for 4 d before mating with an insulin-sensitizing pharmaceutical: glucose and lipid-lowering AMP kinase activator, 5-aminoimidazole 4-carboxamide-riboside, 30 mg/kg.d; sodium salicylate, IkappaK inhibitor that reverses insulin resistance, 50 mg/kg.d; or peroxisome proliferator activated receptor-gamma agonist rosiglitazone, 10 mg/kg.d. 5-aminoimidazole 4-carboxamide-riboside or sodium salicylate treatment did not have significant effects on the reproductive parameters examined. However, embryonic development to the blastocyst stage was significantly improved when DIO mice were treated with rosiglitazone, effectively repairing development rates. Rosiglitazone also normalized DIO-associated abnormal blastomere allocation to the inner cell mass. Such improvements to oocyte quality were coupled with weight loss, improved glucose metabolism, and changes in ovarian mRNA expression of peroxisome proliferator activated receptor-regulated genes, Cd36, Scarb1, and Fabp4 cholesterol transporters. These studies demonstrate that peri-conception treatment with select insulin-sensitizing pharmaceuticals can directly influence ovarian functions and ultimately exert positive effects on oocyte developmental competence. Improved blastocyst quality in obese females treated with rosiglitazone before mating indicates that peroxisome proliferator activated receptor-gamma is a key target for metabolic regulation of ovarian function and oocyte quality.
                Bookmark

                Author and article information

                Journal
                Reprod Biol Endocrinol
                Reprod. Biol. Endocrinol
                Reproductive Biology and Endocrinology : RB&E
                BioMed Central
                1477-7827
                2012
                31 August 2012
                : 10
                : 68
                Affiliations
                [1 ]Center for Reproductive Medicine, Sixth Affiliated Hospital of Sun Yat-sen University, 17th Shou-gou-ling Road, Guangzhou, 510655, People’s Republic of China
                Article
                1477-7827-10-68
                10.1186/1477-7827-10-68
                3488488
                22935215
                93766a7f-b428-46ea-be78-7b562b835304
                Copyright ©2012 Ma et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 April 2012
                : 12 August 2012
                Categories
                Research

                Human biology
                blastocyst,embryo,vitrification,obesity,maternal
                Human biology
                blastocyst, embryo, vitrification, obesity, maternal

                Comments

                Comment on this article