5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Genetic and Clinical Features of P450 Oxidoreductase Deficiency

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          P450 oxidoreductase (POR) deficiency is an autosomal recessive disorder of steroidogenesis with multiple clinical manifestations. POR is the electron donor for all microsomal P450 enzymes, including the three steroidogenic enzymes P450c17 (17α-hydroxylase/17,20-lyase), P450c21 (21-hydroxylase), and P450aro (aromatase). Since the first description of POR mutations in 2004, about 50 patients have been reported. Serum steroid profiles indicate partial deficiencies in 21-hydroxylase, 17α-hydroxylase and 17,20-lyase. The 17-OH progesterone levels are elevated, as in 21-hydroxylase deficiency, while androgen levels are low; cortisol may be normal but is poorly responsive to adrenocorticotropic hormone. Most patients also have associated skeletal malfor- mations (craniosynostosis, radio-ulnar synostosis, midface hypoplasia, bowed femora) termed Antley-Bixler syndrome. Antley-Bixler syndrome with normal steroidogenesis is caused by autosomal dominant gain-of-function mutations in fibroblast growth factor receptor 2. Males with POR deficiency are often undervirilized, while females can be virilized. The prognosis for patients with POR deficiency appears to depend on the severity of the bony malformations and their timely treatment. The potential impact of POR mutations on drug metabolism by other hepatic P450 enzymes requires further investigation. Given the varied physical and biochemical phenotype of POR deficiency and the risk of adrenal insufficiency, clinicians should be alert to this potential diagnosis.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome.

          Crouzon syndrome is an autosomal dominant condition causing premature fusion of the cranial sutures (craniosynostosis) and maps to chromosome 10q25-q26. We now present evidence that mutations in the fibroblast growth factor receptor 2 gene (FGFR2) cause Crouzon syndrome. We found SSCP variations in the B exon of FGFR2 in nine unrelated affected individuals as well as complete cosegregation between SSCP variation and disease in three unrelated multigenerational families. In four sporadic cases, the normal parents did not have SSCP variation. Finally, direct sequencing has revealed specific mutations in the B exon in all nine sporadic and familial cases, including replacement of a cysteine in an immunoglobulin-like domain in five patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome.

            Deficient activities of multiple steroidogenic enzymes have been reported without and with Antley-Bixler syndrome (ABS), but mutations of corresponding cytochrome P450 enzymes have not been found. We identified mutations in POR, encoding P450 oxidoreductase, the obligate electron donor for these enzymes, in a woman with amenorrhea and three children with ABS, even though knock-out of POR is embryonically lethal in mice. Mutations of POR also affect drug-metabolizing P450 enzymes, explaining the association of ABS with maternal fluconazole ingestion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome.

              Pfeiffer syndrome (PS) is one of the classic autosomal dominant craniosynostosis syndromes with craniofacial anomalies and characteristic broad thumbs and big toes. We have previously mapped one of the genes for PS to the centromeric region of chromosome 8 by linkage analysis. Here we present evidence that mutations in the fibroblast growth factor receptor-1 (FGFR1) gene, which maps to 8p, cause one form of familial Pfeiffer syndrome. A C to G transversion in exon 5, predicting a proline to arginine substitution in the putative extracellular domain, was identified in all affected members of five unrelated PS families but not in any unaffected individuals. FGFR1 therefore becomes the third fibroblast growth factor receptor to be associated with an autosomal dominant skeletal disorder.
                Bookmark

                Author and article information

                Journal
                HRE
                Horm Res Paediatr
                10.1159/issn.1663-2818
                Hormone Research in Paediatrics
                S. Karger AG
                1663-2818
                1663-2826
                2008
                May 2008
                06 February 2008
                : 69
                : 5
                : 266-275
                Affiliations
                aDivision of Endocrinology, Department of Paediatrics, IWK Health Centre, Dalhousie University, Halifax, N.S., Canada; bDivision of Endocrinology, Department of Pediatrics, University of California, San Francisco, Calif., USA
                Article
                114857 Horm Res 2008;69:266–275
                10.1159/000114857
                18259105
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, Tables: 2, References: 61, Pages: 10
                Categories
                Mini Review

                Comments

                Comment on this article