19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A paternal methyl donor depleted diet leads to increased anxiety- and depression-like behavior in adult rat offspring

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epigenetic mechanisms such as DNA methylation elicit lasting changes in gene expression and likely mediate gene–environment interactions that shape brain development, behavior, and emotional health. Myriad environmental factors influence DNA methylation, including methyl donor content in the paternal diet, could influence methylation in offspring via changes in the paternal germ line. The present study examines the effects of paternal methyl donor dietary deficiency on offspring’s emotional behaviors, including anxiety, social interaction, and depression-like behavior. We previously found that rats bred to display high levels of anxiety- and depression-like behavior exhibit diminished DNA methylation in the amygdala. We also observed that depleting dietary methyl donor content exacerbated the rats’ already high levels of anxiety- and depression-like behavior. Here we sought to determine whether paternal dietary methyl donor depletion elicits intergenerational effects on first generation (F1) offspring’s behavior (potentially triggering a similar increase in anxiety- and/or depression-like behavior). Thus, adult male rats prone to high anxiety/depression-like behavior, were fed either a methyl donor depleted (DEP) or control (CON) diet for 5 weeks prior to mating. They were paired with females and resultant F1 male offspring were subjected to a behavioral test battery in adulthood. F1-DEP offspring showed a similar behavioral profile to the F0 males, including greater depression-like behavior in the forced swim test (FST) and increased anxiety-like behavior in the open field test (OFT). Future work will interrogate molecular changes in the brains of F1 offspring that mediate these intergenerational effects of paternal methyl donor dietary content on offspring emotional behavior.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Lasting epigenetic influence of early-life adversity on the BDNF gene.

          Childhood maltreatment and early trauma leave lasting imprints on neural mechanisms of cognition and emotion. With a rat model of infant maltreatment by a caregiver, we investigated whether early-life adversity leaves lasting epigenetic marks at the brain-derived neurotrophic factor (BDNF) gene in the central nervous system. During the first postnatal week, we exposed infant rats to stressed caretakers that predominately displayed abusive behaviors. We then assessed DNA methylation patterns and gene expression throughout the life span as well as DNA methylation patterns in the next generation of infants. Early maltreatment produced persisting changes in methylation of BDNF DNA that caused altered BDNF gene expression in the adult prefrontal cortex. Furthermore, we observed altered BDNF DNA methylation in offspring of females that had previously experienced the maltreatment regimen. These results highlight an epigenetic molecular mechanism potentially underlying lifelong and transgenerational perpetuation of changes in gene expression and behavior incited by early abuse and neglect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epigenetic regulation in psychiatric disorders.

            Many neurological and most psychiatric disorders are not due to mutations in a single gene; rather, they involve molecular disturbances entailing multiple genes and signals that control their expression. Recent research has demonstrated that complex 'epigenetic' mechanisms, which regulate gene activity without altering the DNA code, have long-lasting effects within mature neurons. This review summarizes recent evidence for the existence of sustained epigenetic mechanisms of gene regulation in neurons that have been implicated in the regulation of complex behaviour, including abnormalities in several psychiatric disorders such as depression, drug addiction and schizophrenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural mechanisms of stress resilience and vulnerability.

              Exposure to stressful events can be differently perceived by individuals and can have persistent sequelae depending on the level of stress resilience or vulnerability of each person. The neural processes that underlie such clinically and socially important differences reside in the anatomical, functional, and molecular connectivity of the brain. Recent work has provided novel insight into some of the involved biological mechanisms that promises to help prevent and treat stress-related disorders. In this review, we focus on causal and mechanistic evidence implicating altered functions and connectivity of the neuroendocrine system, and of hippocampal, cortical, reward, and serotonergic circuits in the establishment and the maintenance of stress resilience and vulnerability. We also touch upon recent findings suggesting a role for epigenetic mechanisms and neurogenesis in these processes and briefly discuss promising avenues of future investigation. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Biosci Rep
                Biosci. Rep
                ppbioscirep
                BSR
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                26 June 2018
                06 July 2018
                31 August 2018
                : 38
                : 4
                : BSR20180730
                Affiliations
                [1 ]School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A.
                [2 ]Department of Cellular, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, U.S.A.
                [3 ]Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, U.S.A.
                Author notes
                Correspondence: Sarah M. Clinton ( sclinton@ 123456vt.edu )
                Article
                10.1042/BSR20180730
                6153370
                29945927
                938b3290-72dd-4ab3-b1fa-da3953f3cff3
                © 2018 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 10 May 2018
                : 20 June 2018
                : 25 June 2018
                Page count
                Pages: 8
                Categories
                Research Articles
                Research Article
                50
                11
                28
                12
                47

                Life sciences
                anxiety,depression,dna methylation,diet,epigenetics
                Life sciences
                anxiety, depression, dna methylation, diet, epigenetics

                Comments

                Comment on this article