1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hemodynamic patterns and duration of post-dynamic exercise hypotension in hypertensive humans :

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          Short-term effect of dynamic exercise on arterial blood pressure.

          To quantify the duration of postexercise hypotension at different exercise intensities, we studied six unmedicated, mildly hypertensive men matched with six normotensive controls. Each subject wore a 24-hour ambulatory blood pressure monitor at the same time of day for 13 consecutive hours on 3 different days. On each of the 3 days, subjects either cycled for 30 minutes at 40% or 70% maximum VO2 or performed activities of daily living. There was no intensity effect on the postexercise reduction in blood pressure, so blood pressure data were combined for the different exercise intensities. Postexercise diastolic blood pressure and mean arterial pressure were lower by 8 +/- 1 (p less than 0.001) and 7 +/- 1 mm Hg (p less than 0.05), respectively, than the preexercise values for 12.7 hours in the hypertensive group. These variables were not different before and after exercise in the normotensive group. Systolic blood pressure was reduced by 5 +/- 1 mm Hg (p less than 0.05) for 8.7 hours after exercise in the hypertensive group. In contrast, systolic blood pressure was 5 +/- 1 mm Hg (p less than 0.001) higher for 12.7 hours after exercise in the normotensive group. When the blood pressure response on the exercise days was compared with that on the nonexercise day, systolic blood pressure (135 +/- 1 versus 145 +/- 1 mm Hg) and mean arterial pressure (100 +/- 1 versus 106 +/- 1 mm Hg) were lower (p less than 0.05) on the exercise days in the hypertensive but not in the normotensive group. We found a postexercise reduction in mean arterial pressure for 12.7 hours independent of the exercise intensity in the hypertensive group. Furthermore, mean arterial pressure was lower on exercise than on nonexercise days in the hypertensive but not in the normotensive group. These findings indicate that dynamic exercise may be an important adjunct in the treatment of mild hypertension.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide release is present from incubated skeletal muscle preparations.

            To determine whether nitric oxide (NO) synthase activity exists in rat skeletal muscle, media from incubated rat extensor digitorum longus muscle preparations were assayed for NO with a chemiluminescent detection system. Although small amounts of NO were detected in media alone, the addition of muscle increased NO concentration in the media by 30-fold. The release of NO into the media diminished over time. Either arginine (10(-6) M), sodium nitroprusside (10(-6) M), or prior electrical stimulation in vivo caused 50-200% increases (P < 0.05) in NO concentration. NG-monomethyl-L-arginine monoacetate (10(-6) M), an NO synthase inhibitor, decreased both basal 2-deoxyglucose transport and NO efflux, indicating that NO may play a role in modulating skeletal muscle carbohydrate metabolism. These data indicate that NO is released from an incubated skeletal muscle preparation and presents the possibility that muscle-derived NO may play an important metabolic role.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              CIRCADIAN VARIATION OF BLOOD-PRESSURE

                Bookmark

                Author and article information

                Journal
                Medicine & Science in Sports & Exercise
                Medicine & Science in Sports & Exercise
                Ovid Technologies (Wolters Kluwer Health)
                0195-9131
                1996
                January 1996
                : 28
                : 1
                : 24-32
                Article
                10.1097/00005768-199601000-00010
                © 1996

                Comments

                Comment on this article