25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct patterning of organic conductors on knitted textiles for long-term electrocardiography

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wearable sensors are receiving a great deal of attention as they offer the potential to become a key technological tool for healthcare. In order for this potential to come to fruition, new electroactive materials endowing high performance need to be integrated with textiles. Here we present a simple and reliable technique that allows the patterning of conducting polymers on textiles. Electrodes fabricated using this technique showed a low impedance contact with human skin, were able to record high quality electrocardiograms at rest, and determine heart rate even when the wearer was in motion. This work paves the way towards imperceptible electrophysiology sensors for human health monitoring.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Unobtrusive Sensing and Wearable Devices for Health Informatics

          The aging population, prevalence of chronic diseases, and outbreaks of infectious diseases are some of the major challenges of our present-day society. To address these unmet healthcare needs, especially for the early prediction and treatment of major diseases, health informatics, which deals with the acquisition, transmission, processing, storage, retrieval, and use of health information, has emerged as an active area of interdisciplinary research. In particular, acquisition of health-related information by unobtrusive sensing and wearable technologies is considered as a cornerstone in health informatics. Sensors can be weaved or integrated into clothing, accessories, and the living environment, such that health information can be acquired seamlessly and pervasively in daily living. Sensors can even be designed as stick-on electronic tattoos or directly printed onto human skin to enable long-term health monitoring. This paper aims to provide an overview of four emerging unobtrusive and wearable technologies, which are essential to the realization of pervasive health information acquisition, including: 1) unobtrusive sensing methods, 2) smart textile technology, 3) flexible-stretchable-printable electronics, and 4) sensor fusion, and then to identify some future directions of research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organic materials for printed electronics.

            Organic materials can offer a low-cost alternative for printed electronics and flexible displays. However, research in these systems must exploit the differences - via molecular-level control of functionality - compared with inorganic electronics if they are to become commercially viable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrochemical modulation of epithelia formation using conducting polymers.

              Conducting polymers are soft, flexible materials, exhibiting material properties that can be reversibly changed by electrochemically altering the redox state. Surface chemistry is an important determinant for the molecular events of cell adhesion. Therefore, we analyzed whether the redox state of the conducting polymer PEDOT:Tosylate can be used to control epithelial cell adhesion and proliferation. A functionalized cell culture dish comprising two adjacent electrode surfaces was developed. Upon electronic addressing, reduced and oxidized surfaces are created within the same device. Simultaneous analysis of how a homogenous epithelial MDCK cell population responded to the electrodes revealed distinct surface-specific differences. Presentation of functional fibronectin on the reduced electrode promoted focal adhesion formation, involving alpha(v)beta(3) integrin, cell proliferation, and ensuing formation of polarized monolayers. In contrast, the oxidized surface harbored only few cells with deranged morphology showing no indication of proliferation. This stems from the altered fibronectin conformation, induced by the different surface chemistry of the PEDOT:Tosylate electrode in the oxidized state. Our results demonstrate a novel use of PEDOT:Tosylate as a cell-hosting material in multiple-electrode systems, where cell adhesion and proliferation can be controlled by electrochemical modulation of surface properties.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                08 October 2015
                2015
                : 5
                : 15003
                Affiliations
                [1 ]National Institute of Advanced Industrial Science and Technology , Tsukuba 305-8564, Japan
                [2 ]Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC , 13541 Gardanne, France
                [3 ]MicroVitae Technologies , 13590 Meyreuil, France
                [4 ]Aix Marseille Université, INS/Inserm, UMR-S 1106 , 13005 Marseille, France
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep15003
                10.1038/srep15003
                4597223
                26446346
                9395c0e4-3fde-4ea4-9a43-334c2d051b05
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 10 May 2015
                : 11 September 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article