Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Endocrine Regulation of Bone and Energy Metabolism in Hibernating Mammals

      , ,

      Integrative and Comparative Biology

      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 172

          • Record: found
          • Abstract: found
          • Article: not found

          Positional cloning of the mouse obese gene and its human homologue.

          The mechanisms that balance food intake and energy expenditure determine who will be obese and who will be lean. One of the molecules that regulates energy balance in the mouse is the obese (ob) gene. Mutation of ob results in profound obesity and type II diabetes as part of a syndrome that resembles morbid obesity in humans. The ob gene product may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ghrelin is a growth-hormone-releasing acylated peptide from stomach.

            Small synthetic molecules called growth-hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through GHS-R, a G-protein-coupled receptor for which the ligand is unknown. Recent cloning of GHS-R strongly suggests that an endogenous ligand for the receptor does exist and that there is a mechanism for regulating GH release that is distinct from its regulation by hypothalamic growth-hormone-releasing hormone (GHRH). We now report the purification and identification in rat stomach of an endogenous ligand specific for GHS-R. The purified ligand is a peptide of 28 amino acids, in which the serine 3 residue is n-octanoylated. The acylated peptide specifically releases GH both in vivo and in vitro, and O-n-octanoylation at serine 3 is essential for the activity. We designate the GH-releasing peptide 'ghrelin' (ghre is the Proto-Indo-European root of the word 'grow'). Human ghrelin is homologous to rat ghrelin apart from two amino acids. The occurrence of ghrelin in both rat and human indicates that GH release from the pituitary may be regulated not only by hypothalamic GHRH, but also by ghrelin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ghrelin induces adiposity in rodents.

              The discovery of the peptide hormone ghrelin, an endogenous ligand for the growth hormone secretagogue (GHS) receptor, yielded the surprising result that the principal site of ghrelin synthesis is the stomach and not the hypothalamus. Although ghrelin is likely to regulate pituitary growth hormone (GH) secretion along with GH-releasing hormone and somatostatin, GHS receptors have also been identified on hypothalamic neurons and in the brainstem. Apart from potential paracrine effects, ghrelin may thus offer an endocrine link between stomach, hypothalamus and pituitary, suggesting an involvement in regulation of energy balance. Here we show that peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats. Intracerebroventricular administration of ghrelin generated a dose-dependent increase in food intake and body weight. Rat serum ghrelin concentrations were increased by fasting and were reduced by re-feeding or oral glucose administration, but not by water ingestion. We propose that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary.
                Bookmark

                Author and article information

                Journal
                Integrative and Comparative Biology
                Integrative and Comparative Biology
                Oxford University Press (OUP)
                1540-7063
                1557-7023
                August 12 2014
                September 01 2014
                February 19 2014
                September 01 2014
                : 54
                : 3
                : 463-483
                Article
                10.1093/icb/icu001
                © 2014

                Comments

                Comment on this article