26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene Expression Analysis of Neurons and Astrocytes Isolated by Laser Capture Microdissection from Frozen Human Brain Tissues

      methods-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Different cell types and multiple cellular connections characterize the human brain. Gene expression analysis using a specific population of cells is more accurate than conducting analysis of the whole tissue homogenate, particularly in the context of neurodegenerative diseases, where a specific subset of cells is affected by the different pathology. Due to the difficulty of obtaining homogenous cell populations, gene expression in specific cell-types (neurons, astrocytes, etc.) has been understudied. To leverage the use of archive resources of frozen human brains in studies of neurodegenerative diseases, we developed and calibrated a method to quantify cell-type specific—neuronal, astrocytes—expression profiles of genes implicated in neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. Archive human frozen brain tissues were used to prepare slides for rapid immunostaining using cell-specific antibodies. The immunoreactive-cells were isolated by Laser Capture Microdissection (LCM). The enrichment for a particular cell-type of interest was validated in post-analysis stage by the expression of cell-specific markers. We optimized the technique to preserve the RNA integrity, so that the RNA was suitable for downstream expression analyses. Following RNA extraction, the expression levels were determined digitally using nCounter Single Cell Gene Expression assay (NanoString Technologies®). The results demonstrated that using our optimized technique we successfully isolated single neurons and astrocytes from human frozen brain tissues and obtained RNA of a good quality that was suitable for mRNA expression analysis. We present here new advancements compared to previous reported methods, which improve the method's feasibility and its applicability for a variety of downstream molecular analyses. Our new developed method can be implemented in genetic and functional genomic research of neurodegenerative diseases and has the potential to significantly advance the field.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          GFAP in health and disease.

          Glial fibrillary acidic protein (GFAP) is the main intermediate filament protein in mature astrocytes, but also an important component of the cytoskeleton in astrocytes during development. Major recent developments in astrocyte biology and the discovery of novel intermediate filament functions enticed the interest in the function of GFAP. The discovery of various GFAP splice variants gave an additional boost to explore this protein in more detail. The structural role of GFAP in astrocytes has been widely accepted for a long time, but over the years, GFAP has been shown to be involved in astrocyte functions, which are important during regeneration, synaptic plasticity and reactive gliosis. Moreover, different subpopulations of astrocytes have been identified, which are likely to have distinctive tasks in brain physiology and pathology, and which are not only classified by their spatial and temporal appearance, but also by their specific expression of intermediate filaments, including distinct GFAP isoforms. The presence of these isoforms enhances the complexity of the astrocyte cytoskeleton and is likely to underlie subtype specific functions. In this review we discuss the versatility of the GFAP cytoskeletal network from gene to function with a focus on astrocytes during human brain development, aging and disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluating Robustness and Sensitivity of the NanoString Technologies nCounter Platform to Enable Multiplexed Gene Expression Analysis of Clinical Samples.

            Analysis of clinical trial specimens such as formalin-fixed paraffin-embedded (FFPE) tissue for molecular mechanisms of disease progression or drug response is often challenging and limited to a few markers at a time. This has led to the increasing importance of highly multiplexed assays that enable profiling of many biomarkers within a single assay. Methods for gene expression analysis have undergone major advances in biomedical research, but obtaining a robust dataset from low-quality RNA samples, such as those isolated from FFPE tissue, remains a challenge. Here, we provide a detailed evaluation of the NanoString Technologies nCounter platform, which provides a direct digital readout of up to 800 mRNA targets simultaneously. We tested this system by examining a broad set of human clinical tissues for a range of technical variables, including sensitivity and limit of detection to varying RNA quantity and quality, reagent performance over time, variability between instruments, the impact of the number of fields of view sampled, and differences between probe sequence locations and overlapping genes across CodeSets. This study demonstrates that Nanostring offers several key advantages, including sensitivity, reproducibility, technical robustness, and utility for clinical application.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Postmortem interval effect on RNA and gene expression in human brain tissue.

              Banked tissue is essential to the study of neurological disease but using postmortem tissue introduces a number of possible confounds. Foremost amongst these are factors relating to variation in postmortem interval (PMI). Currently there are conflicting reports on how PMI affects overall RNA integrity, and very few reports of how gene expression is affected by PMI. We analyzed total RNA extracted from frozen cerebellar cortex from 79 deceased human subjects enrolled in the Banner Sun Health Research Institute Brain and Body Donation Program. The PMI, which ranged from 1.5 to 45 h, correlated with overall RNA quality measures including RNA Integrity Number (RIN) (r = -0.34, P = 0.002) and RNA quantitative yield (r = -0.25, P = 0.02). Additionally, we determined the expression of 89 genes using a PCR-based gene expression array (RT(2) Profiler™ PCR Array: Human Alzheimer's Disease; SABiosciences™, Frederick, MD). A greater proportion of genes had decreased rather than increased expression with increasing PMI (65/89 vs. 20/89; P < 0.0001). Of these, transcripts from the genes ADAM9, LPL, PRKCG, and SERPINA3 had significantly decreased expression with increasing PMI (P < 0.01). No individual gene transcripts had significantly increased expression with increasing PMI. In conclusion, it is apparent that RNA degrades progressively with increasing PMI and that measurement of gene expression in brain tissue with longer PMI may give artificially low values. For tissue derived from autopsy, a short PMI optimizes its utility for molecular research.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                18 August 2016
                2016
                : 9
                : 72
                Affiliations
                [1] 1Department of Neurology, Duke University Medical Center Durham, NC, USA
                [2] 2Center for Genomic and Computational Biology, Duke University Medical Center Durham, NC, USA
                Author notes

                Edited by: Hibah Omar Awwad, University of Oklahoma Health Sciences Center, USA

                Reviewed by: Hugo H. Marti, Heidelberg University, Germany; Firas H. Kobeissy, University of Florida, USA

                *Correspondence: Ornit Chiba-Falek o.chibafalek@ 123456duke.edu
                Article
                10.3389/fnmol.2016.00072
                4988976
                93ae94fc-9992-430d-ab80-659f8a232368
                Copyright © 2016 Tagliafierro, Bonawitz, Glenn and Chiba-Falek.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 June 2016
                : 02 August 2016
                Page count
                Figures: 5, Tables: 7, Equations: 0, References: 21, Pages: 9, Words: 6014
                Categories
                Neuroscience
                Methods

                Neurosciences
                neuron,astrocyte,post-mortem frozen human brain,laser capture microdissection,rna,gene expression

                Comments

                Comment on this article