1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemical composition of Gastrocotyle hispida (Forssk.) bunge and Heliotropium crispum Desf. and evaluation of their multiple in vitro biological potentials

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Medicinal plants largely serve as a source of bioactive compounds in traditional medicines to cure various diseases. The present study was aimed at chemical composition, antioxidant, antimicrobial, cytotoxic and antihemolytic potential of five different extracts of G. hispida and H. crispum (Boraginaceae). G. hispida methanolic extract displayed highest number (eleven) of polyphenolic compounds by using high performance liquid chromatography (HPLC). Functional groups were identified by Fourier-transformed infrared spectroscopy (FTIR) and elements (Si, Fe, Ba, Mg, Ti, Ca, Mg and Cr) were observed by using laser-induced breakdown spectroscopy (LIBS) which were also highly expressed in G. hispida as compared to H. crispum. Antioxidant activity was determined via six assays and antibacterial activity was observed in decreasing order of methanol > ethanol > chloroform > ethyl acetate > n-Hexane in both species. Cytotoxic potential was investigated against brine shrimps and then liver (HepG2) and skin (HT144) cancer cell lines which was detected highest in the G. hispida ethanolic extract (50.76 % and 72.95 %). However, H. crispum chloroform extract revealed highest (31.869 μg/mL) antihemolytic activity and its methanolic extract indicated highest (13.5 %) alpha-amylase inhibitory potential. Altogether, results suggested that both species could be used effectively in food and drug industries owing to the presence of vital bioactive compounds and elements. In future, we recommend to isolate active compounds and to perform in vivo biological assays to further validate their potential biological applications.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found

          Neurofilaments as biomarkers in neurological disorders

          Neuroaxonal damage is the pathological substrate of permanent disability in various neurological disorders. Reliable quantification and longitudinal follow-up of such damage are important for assessing disease activity, monitoring treatment responses, facilitating treatment development and determining prognosis. The neurofilament proteins have promise in this context because their levels rise upon neuroaxonal damage not only in the cerebrospinal fluid (CSF) but also in blood, and they indicate neuroaxonal injury independent of causal pathways. First-generation (immunoblot) and second-generation (enzyme-linked immunosorbent assay) neurofilament assays had limited sensitivity. Third-generation (electrochemiluminescence) and particularly fourth-generation (single-molecule array) assays enable the reliable measurement of neurofilaments throughout the range of concentrations found in blood samples. This technological advancement has paved the way to investigate neurofilaments in a range of neurological disorders. Here, we review what is known about the structure and function of neurofilaments, discuss analytical aspects and knowledge of age-dependent normal ranges of neurofilaments and provide a comprehensive overview of studies on neurofilament light chain as a marker of axonal injury in different neurological disorders, including multiple sclerosis, neurodegenerative dementia, stroke, traumatic brain injury, amyotrophic lateral sclerosis and Parkinson disease. We also consider work needed to explore the value of this axonal damage marker in managing neurological diseases in daily practice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E.

            A spectrophotometric method has been developed for the quantitative determination of antioxidant capacity. The assay is based on the reduction of Mo(VI) to Mo(V) by the sample analyte and the subsequent formation of a green phosphate/Mo(V) complex at acidic pH. The method has been optimized and characterized with respect to linearity interval, repetitivity and reproducibility, and molar absorption coefficients for the quantitation of several antioxidants, including vitamin E. The phosphomolybdenum method, in combination with hexane monophasic extraction, has also been adapted for the specific determination of vitamin E in seeds. The results obtained with the proposed method were validated by comparison with a standard HPLC method. The phosphomolybdenum method is routinely applied in our laboratory to evaluate the total antioxidant capacity of plant extracts and to determine vitamin E in a variety of grains and seeds, including corn and soybean. Copyright 1999 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties

              Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Saudi J Biol Sci
                Saudi J Biol Sci
                Saudi Journal of Biological Sciences
                Elsevier
                1319-562X
                2213-7106
                17 September 2021
                November 2021
                17 September 2021
                : 28
                : 11
                : 6086-6096
                Affiliations
                [a ]Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
                [b ]National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
                [c ]Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
                [d ]Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
                [e ]Department of Zoology, Rawalpindi Women University, Rawalpindi, Pakistan
                [f ]Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, chuo-ku, Kumamoto, Japan
                [g ]Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
                [h ]Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
                Author notes
                Article
                S1319-562X(21)00841-X
                10.1016/j.sjbs.2021.09.040
                8568834
                34764742
                93bca152-f09d-4592-9c22-7546d7656118
                © 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 9 August 2021
                : 11 September 2021
                : 12 September 2021
                Categories
                Original Article

                boraginaceae,hplc,functional groups,libs,anticancer,human erythrocytes

                Comments

                Comment on this article