304
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte–Neuron Communication

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuronal activity provokes myelinating oligodendrocytes to release exosomes by stimulation of ionotropic glutamate receptors, and that once released, these vesicles are internalized by neurons conveying neuroprotection.

          Abstract

          Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated transfer of exosomes from oligodendrocytes to neurons. These endosome-derived vesicles are secreted by oligodendrocytes and carry specific protein and RNA cargo. We show that activity-dependent release of the neurotransmitter glutamate triggers oligodendroglial exosome secretion mediated by Ca 2+ entry through oligodendroglial NMDA and AMPA receptors. In turn, neurons internalize the released exosomes by endocytosis. Injection of oligodendroglia-derived exosomes into the mouse brain results in functional retrieval of exosome cargo in neurons. Supply of cultured neurons with oligodendroglial exosomes improves neuronal viability under conditions of cell stress. These findings indicate that oligodendroglial exosomes participate in a novel mode of bidirectional neuron-glia communication contributing to neuronal integrity.

          Author Summary

          Brain function largely depends on the communication between electrically excitable neurons and surrounding glial cells. Myelinating oligodendrocytes are a type of brain cell that insulate major neuronal processes (axons) and help to sustainably maintain axonal health, which is poorly understood in molecular terms. Several cell types release microvesicles termed exosomes that include genetic information (primarily RNA) and can act as vehicles transferring specific cargo to target cells. Here, we demonstrate that exosomes secreted by oligodendrocytes in response to neuronal signals enter neurons to make their cargo functionally available to the neuronal metabolism. We revealed in cultured cells that exosome release from oligodendrocytes is triggered by the neurotransmitter glutamate through activation of ionotropic glutamate receptors. We also show that glial exosomes are internalized by neurons via an endocytic pathway. By modifying oligodendroglial exosomes with a reporter enzyme, we could demonstrate that the exosome cargo is recovered by target neurons in culture as well as in vivo after injection of exosomes into the mouse brain. Neurons challenged with stressful growth conditions were protected when treated with oligodendroglial exosomes. The study introduces a new concept of reciprocal cell communication in the nervous system and identifies the signal-mediated transfer of exosomes from oligodendrocytes to neurons contributing to the preservation of axonal health.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory.

          We have produced a mouse strain in which the deletion of the NMDAR1 gene is restricted to the CA1 pyramidal cells of the hippocampus by using a new and general method that allows CA1-restricted gene knockout. The mutant mice grow into adulthood without obvious abnormalities. Adult mice lack NMDA receptor-mediated synaptic currents and long-term potentiation in the CA1 synapses and exhibit impaired spatial memory but unimpaired nonspatial learning. Our results strongly suggest that activity-dependent modifications of CA1 synapses, mediated by NMDA receptors, play an essential role in the acquisition of spatial memories.
            • Record: found
            • Abstract: found
            • Article: not found

            Myelination and support of axonal integrity by glia.

            The myelination of axons by glial cells was the last major step in the evolution of cells in the vertebrate nervous system, and white-matter tracts are key to the architecture of the mammalian brain. Cell biology and mouse genetics have provided insight into axon-glia signalling and the molecular architecture of the myelin sheath. Glial cells that myelinate axons were found to have a dual role by also supporting the long-term integrity of those axons. This function may be independent of myelin itself. Myelin abnormalities cause a number of neurological diseases, and may also contribute to complex neuropsychiatric disorders.
              • Record: found
              • Abstract: found
              • Article: not found

              Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus.

              Fast excitatory neurotransmission in the central nervous system occurs at specialized synaptic junctions between neurons, where a high concentration of glutamate directly activates receptor channels. Low-affinity AMPA (alpha-amino-3-hydroxy-5-methyl isoxazole propionic acid) and kainate glutamate receptors are also expressed by some glial cells, including oligodendrocyte precursor cells (OPCs). However, the conditions that result in activation of glutamate receptors on these non-neuronal cells are not known. Here we report that stimulation of excitatory axons in the hippocampus elicits inward currents in OPCs that are mediated by AMPA receptors. The quantal nature of these responses and their rapid kinetics indicate that they are produced by the exocytosis of vesicles filled with glutamate directly opposite these receptors. Some of these AMPA receptors are permeable to calcium ions, providing a link between axonal activity and internal calcium levels in OPCs. Electron microscopic analysis revealed that vesicle-filled axon terminals make synaptic junctions with the processes of OPCs in both the young and adult hippocampus. These results demonstrate the existence of a rapid signalling pathway from pyramidal neurons to OPCs in the mammalian hippocampus that is mediated by excitatory, glutamatergic synapses.

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                July 2013
                July 2013
                9 July 2013
                : 11
                : 7
                : e1001604
                Affiliations
                [1 ]Department of Molecular Cell Biology, University of Mainz, Mainz, Germany
                [2 ]Focus Program Translational Neuroscience, University of Mainz, Mainz, Germany
                [3 ]Max Planck Institute of Experimental Medicine, Göttingen, Germany
                [4 ]Department of Molecular Physiology, University of Saarland, Homburg, Germany
                [5 ]Department of Psychiatry and Psychotherapy, University of Göttingen, German Center for Neurodegenerative Diseases, DZNE Goettingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (EXC171) and DFG Research Center of Molecular Physiology of the Brain, Göttingen, Germany
                [6 ]Department of Neurology, University of Göttingen, Göttingen, Germany
                [7 ]Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia
                Stanford University School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: CF DF WPK EMKA. Performed the experiments: CF DF WPK JA ST WM SG AS. Analyzed the data: CF DF WPK WM SG AS EMKA. Contributed reagents/materials/analysis tools: FK ASS KAN MS MK JT. Wrote the paper: CF DF WPK EMKA. Corrected the manuscript: JT MS. Conceived and conducted the study: EMKA.

                Article
                PBIOLOGY-D-13-01553
                10.1371/journal.pbio.1001604
                3706306
                23874151
                93ce6285-7f6b-4832-89f9-fdc010dedd32
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 April 2013
                : 29 May 2013
                Page count
                Pages: 19
                Funding
                The study was supported by grants of ELA (2007-027C1) and DFG (KR 3668/1-1) to EMKA, DFG SFB 894 (A12) to FK, DFG Research Center Molecular Physiology of the Brain (CNMPB), and ERC Advanced Grant to KAN. CF received internal research funding for early career researchers from JGU Mainz. MK is an Australian Research Council (ARC) Future Fellow. DF received fellowships from the Stipendienstiftung Rheinland Pfalz and the DFG GRK 1044. WPK is a fellow of the Focus Program Translational Neuroscience JGU Mainz. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Cytochemistry
                Immunocytochemistry
                Organelles
                Metabolism
                Biological Transport
                Neurochemistry
                Neuromodulation
                Macromolecular Assemblies
                Molecular Cell Biology
                Cellular Structures
                Subcellular Organelles
                Cellular Types
                Neurons
                Membranes and Sorting
                Neuroscience
                Cellular Neuroscience
                Molecular Neuroscience
                Neurotransmitters
                Medicine
                Neurology
                Demyelinating Disorders
                Multiple Sclerosis

                Life sciences
                Life sciences

                Comments

                Comment on this article

                Related Documents Log