7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous.

          The evolutionary history of the phytopathogenic Gibberella fujikuroi complex of Fusarium and related species was investigated by cladistic analysis of DNA sequences obtained from multiple unlinked loci. Gene phylogenies inferred from the mitochondrial small subunit (mtSSU) rDNA, nuclear 28S rDNA, and beta-tubulin gene were generally concordant, providing strong support for a fully resolved phylogeny of all biological and most morphological species. Discordance of the nuclear rDNA internal transcribed spacer 2 (ITS2) gene tree is due to paralogous or xenologous ITS2 sequences. PCR and sequence analysis demonstrated that every strain of the ingroup species tested possesses two highly divergent nonorthologous ITS2 types designated type I and type II. Only the major ITS2 type, however, is discernable when PCR products are amplified and sequenced directly with conserved primers. The minor ITS2 type was recovered using ITS2 type-specific PCR primers. Distribution of the major ITS2 type within the species lineages exhibits a homoplastic pattern of evolution, thus obscuring true phylogenetic relationships. The results suggest that the ancestral ITS2 types may have arisen following an ancient interspecific hybridization or gene duplication which occurred prior to the evolutionary radiation of the Gibberella fujikuroi complex and related species of Fusarium. The results also indicate that current morphological-based taxonomic schemes for these fungi are unnatural and a new classification is required.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Identification and nomenclature of the genus Penicillium

              Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade. As a result of this, and the many new species described in recent years, it was necessary to update the list of accepted species in Penicillium. The genus currently contains 354 accepted species, including new combinations for Aspergillus crystallinus, A. malodoratus and A. paradoxus, which belong to Penicillium section Paradoxa. To add to the taxonomic value of the list, we also provide information on each accepted species MycoBank number, living ex-type strains and provide GenBank accession numbers to ITS, β-tubulin, calmodulin and RPB2 sequences, thereby supplying a verified set of sequences for each species of the genus. In addition to the nomenclatural list, we recommend a standard working method for species descriptions and identifications to be adopted by laboratories working on this genus.
                Bookmark

                Author and article information

                Journal
                Plant Systematics and Evolution
                Plant Syst Evol
                Springer Nature
                0378-2697
                2199-6881
                November 2016
                August 31 2016
                November 2016
                : 302
                : 9
                : 1267-1299
                Article
                10.1007/s00606-016-1331-5
                93eb88c7-3f70-4118-b8be-8bf678aa4b61
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article