61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome of a Low-Salinity Ammonia-Oxidizing Archaeon Determined by Single-Cell and Metagenomic Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ammonia-oxidizing archaea (AOA) are thought to be among the most abundant microorganisms on Earth and may significantly impact the global nitrogen and carbon cycles. We sequenced the genome of AOA in an enrichment culture from low-salinity sediments in San Francisco Bay using single-cell and metagenomic genome sequence data. Five single cells were isolated inside an integrated microfluidic device using laser tweezers, the cells' genomic DNA was amplified by multiple displacement amplification (MDA) in 50 nL volumes and then sequenced by high-throughput DNA pyrosequencing. This microscopy-based approach to single-cell genomics minimizes contamination and allows correlation of high-resolution cell images with genomic sequences. Statistical properties of coverage across the five single cells, in combination with the contrasting properties of the metagenomic dataset allowed the assembly of a high-quality draft genome. The genome of this AOA, which we designate Candidatus Nitrosoarchaeum limnia SFB1, is ∼1.77 Mb with >2100 genes and a G+C content of 32%. Across the entire genome, the average nucleotide identity to Nitrosopumilus maritimus, the only AOA in pure culture, is ∼70%, suggesting this AOA represents a new genus of Crenarchaeota. Phylogenetically, the 16S rRNA and ammonia monooxygenase subunit A ( amoA) genes of this AOA are most closely related to sequences reported from a wide variety of freshwater ecosystems. Like N. maritimus, the low-salinity AOA genome appears to have an ammonia oxidation pathway distinct from ammonia oxidizing bacteria (AOB). In contrast to other described AOA, these low-salinity AOA appear to be motile, based on the presence of numerous motility- and chemotaxis-associated genes in the genome. This genome data will be used to inform targeted physiological and metabolic studies of this novel group of AOA, which may ultimately advance our understanding of AOA metabolism and their impacts on the global carbon and nitrogen cycles.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean.

          Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, occurs in a wide variety of environments and plays a central role in the global nitrogen cycle. Catalyzed by the enzyme ammonia monooxygenase, the ability to oxidize ammonia was previously thought to be restricted to a few groups within the beta- and gamma-Proteobacteria. However, recent metagenomic studies have revealed the existence of unique ammonia monooxygenase alpha-subunit (amoA) genes derived from uncultivated, nonextremophilic Crenarchaeota. Here, we report molecular evidence for the widespread presence of ammonia-oxidizing archaea (AOA) in marine water columns and sediments. Using PCR primers designed to specifically target archaeal amoA, we find AOA to be pervasive in areas of the ocean that are critical for the global nitrogen cycle, including the base of the euphotic zone, suboxic water columns, and estuarine and coastal sediments. Diverse and distinct AOA communities are associated with each of these habitats, with little overlap between water columns and sediments. Within marine sediments, most AOA sequences are unique to individual sampling locations, whereas a small number of sequences are evidently cosmopolitan in distribution. Considering the abundance of nonextremophilic archaea in the ocean, our results suggest that AOA may play a significant, but previously unrecognized, role in the global nitrogen cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Archaea in coastal marine environments.

            E Delong (1992)
            Archaea (archaebacteria) are a phenotypically diverse group of microorganisms that share a common evolutionary history. There are four general phenotypic groups of archaea: the methanogens, the extreme halophiles, the sulfate-reducing archaea, and the extreme thermophiles. In the marine environment, archaeal habitats are generally limited to shallow or deep-sea anaerobic sediments (free-living and endosymbiotic methanogens), hot springs or deep-sea hydrothermal vents (methanogens, sulfate reducers, and extreme thermophiles), and highly saline land-locked seas (halophiles). This report provides evidence for the widespread occurrence of unusual archaea in oxygenated coastal surface waters of North America. Quantitative estimates indicated that up to 2% of the total ribosomal RNA extracted from coastal bacterioplankton assemblages was archaeal. Archaeal small-subunit ribosomal RNA-encoding DNAs (rDNAs) were cloned from mixed bacterioplankton populations collected at geographically distant sampling sites. Phylogenetic and nucleotide signature analyses of these cloned rDNAs revealed the presence of two lineages of archaea, each sharing the diagnostic signatures and structural features previously established for the domain Archaea. Both of these lineages were found in bacterioplankton populations collected off the east and west coasts of North America. The abundance and distribution of these archaea in oxic coastal surface waters suggests that these microorganisms represent undescribed physiological types of archaea, which reside and compete with aerobic, mesophilic eubacteria in marine coastal environments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optical trapping.

              Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on-and the measurement of nanometer-level displacements of-optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                22 February 2011
                : 6
                : 2
                : e16626
                Affiliations
                [1 ]Howard Hughes Medical Institute, Department of Bioengineering, Stanford University, Stanford, California, United States of America
                [2 ]Department of Environmental Earth System Science, Stanford University, Stanford, California, United States of America
                Argonne National Laboratory, United States of America
                Author notes

                Conceived and designed the experiments: PCB ACM CAF SRQ. Performed the experiments: PCB ACM AP. Analyzed the data: PCB ACM CAF SRQ.

                Article
                PONE-D-10-01939
                10.1371/journal.pone.0016626
                3043068
                21364937
                93f04cb0-13bb-432b-9278-c74578a78251
                Blainey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 September 2010
                : 7 January 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Biotechnology
                Bioengineering
                Genomics
                Comparative Genomics
                Genome Sequencing
                Metagenomics
                Structural Genomics
                Marine Biology
                Marine Ecology
                Microbiology
                Archaeans
                Archaeal Physiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article