Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective

      , , , ,

      Reports on Progress in Physics

      IOP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 82

          • Record: found
          • Abstract: not found
          • Article: not found

          Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unconventional superconductivity in Ba(0.6)K(0.4)Fe2As2 from inelastic neutron scattering.

              A new family of superconductors containing layers of iron arsenide has attracted considerable interest because of their high transition temperatures (T(c)), some of which are >50 K, and because of similarities with the high-T(c) copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase. This resonance, which has also been observed in several heavy-fermion superconductors, is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface. Here we report inelastic neutron scattering observations of a magnetic resonance below T(c) in Ba(0.6)K(0.4)Fe(2)As(2), a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.
                Bookmark

                Author and article information

                Journal
                Reports on Progress in Physics
                Rep. Prog. Phys.
                IOP Publishing
                0034-4885
                1361-6633
                December 01 2011
                December 01 2011
                November 25 2011
                : 74
                : 12
                : 124512
                Article
                10.1088/0034-4885/74/12/124512
                © 2011

                Comments

                Comment on this article